Study of the possibility of using cavitation microcurrents in an ultrasonic scalpel for the glaucoma treatment

Authors

DOI:

https://doi.org/10.20535/2521-1943.2024.8.4(103).316187

Keywords:

ultrasound, cavitation, microjets, elasticity, scalpel, glaucoma, trabeculae

Abstract

The development of new medical instruments for surgical treatment of glaucoma patients is an urgent scientific and applied task of modern mechanical engineering, since the number of visually impaired people in Ukraine due to glaucoma is growing every year. Today, the phenomenon of ultrasonic cavitation is widely used in technology, which occurs when high-intensity ultrasonic vibrations are introduced into a liquid and provides high-quality removal of contaminants from surfaces, disinfection, fine atomization, the formation of intense microcurrents, etc. Our work investigates changes in biomechanical reactions as a result of minimally invasive glaucoma surgery - expansion of physiological pathways for the outflow of intraocular fluid (trabecular apparatus, Schlemm's canal, etc.) using procedures using ultrasonic cavitation. By modernizing the phacoemulsifier, an ultrasonic glaucoma scalpel was created, which will allow cleaning the pores of the trabecular meshwork, restoring and maintaining its elasticity, reducing resistance to the outflow of ocular fluid, and reducing intraocular pressure. The use of such a tool will help ophthalmologists perform minimally invasive interventions aimed at normalizing the level of intraocular pressure in a less invasive and safer way, which will contribute to the prevention of progression and successful treatment of glaucoma. The development of the latest medical tools will make it possible to develop individual treatment strategies based on the specific needs and severity of the disease of each patient and create a perfect system of treatment for glaucoma patients.

References

  1. S. Resnikoff, D. Pascolini, D. Etya'ale, I. Kocur, R. Pararajasegaram, G.P. Pokharel, S.P. Mariotti. Global data on visual impairment in the year 2002. Bull World Health Organ vol.82, pp. 844-851, 2004. doi: 10.1590/S0042-96862004001100009.
  2. P.J. Foster, R. Buhrmann, H.A. Quigley, G.J. Johnson. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol vol. 86, pp.238-242, 2002. doi: 10.1136/bjo.86.2.238.
  3. Y.H. Kwon, J.H. Fingert, M.H. Kuehn, W.L. Alward. Primary open-angle glaucoma. N Engl J Med vol. 360, pp. 1113-1124, 2009. doi: 10.1056/NEJMra0804630.
  4. S.O. Rykov, N.V. Medvedovska, Yu. V. Barinov. “Retrospective analysis of regional features of staffing of the ophthalmological service of Ukraine” (in Ukraine). Archives of Ophthalmology of Ukraine no. 7(2). pp.6-10, 2019. doi: 10.22141/2309-8147.7.2.2019.169681.
  5. Collaborative Normal-Tension Glaucoma Study Group (1998a) Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol, vol. 126, pp. 487-497, 1998. doi: 10.1016/s0002-9394(98)00223-2.
  6. Collaborative Normal-Tension Glaucoma Study Group (1998b) The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Collaborative Normal-Tension Glaucoma Study Group. Am J Ophthalmol, vol. 126, pp. 498-505, 1998. doi: 10.1016/s0002-9394(98)00272-4.
  7. The AGIS Investigators. The advanced glaucoma intervention study (AGIS). The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol, vol. 130, pp.429-440, 2000. doi: 10.1016/s0002-9394(00)00538-9.
  8. P.R. Lichter, D.C. Musch, B.W. Gillespie, K.E. Guire, N.K. Janz, P.A. Wren, R.P. Mills. Interim clinical outcomes in the Collaborative Initial Glaucoma Treatment Study comparing initial treatment randomized to medications or surgery. Ophthalmology, vol.108, pp. 1943-1953, 2001. doi: 10.1016/s0161-6420(01)00873-9.
  9. M.O. Gordon, J.A. Beiser, J.D. Brandt, D.K. Heuer, E.J. Higginbotham, C.A. Johnson, J.L. Keltner, J.P. Miller, R.K. 2nd Parrish, M.R. Wilson, M.A. Kass. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol, vol.120 (6), pp. 714-720, 2002. doi: 10.1001/archopht.120.6.714.
  10. M.A. Kass, D.K. Heuer, E.J. Higginbotham, C.A. Johnson, J.L. Keltner, J.P. Miller, R.K. 2nd Parrish, M.R. Wilson, M.O. Gordon. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol, vol. 120, pp.701-713, 2002. doi: 10.1001/archopht.120.6.701.
  11. M.C. Leske, A. Heijl, M. Hussein, B. Bengtsson, L. Hyman, E. Komaroff. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol, vol. 121, pp. 48-56, 2003. doi: 10.1001/archopht.121.1.48.
  12. H.A. Quigley. Glaucoma. Lancet, vol. 377 (9774), pp. 1367-1377, 2011. doi: 10.1016/S0140-6736(10)61423-7.
  13. M.R. Hernandez, H. Ye, S. Roy. Collagen type IV gene expression in human optic nerve heads with primary open angle glaucoma. Exp Eye Res,vol. 59, pp. 41-51, 1994. doi: 10.1006/exer.1994.1079.
  14. H.A. Quigley. Neuronal death in glaucoma. Prog Retin Eye Res, vol. 18 (1), pp. 39-57, 1999. doi: 10.1016/s1350-9462(98)00014-7.
  15. M.R. Hernandez. The optic nerve head in glaucoma: role of astrocytes in tissue remodeling. Prog Retin Eye Res, vol. 19, pp. 297-321, 2000. doi: 10.1016/s1350-9462(99)00017-8.
  16. C.F. Burgoyne. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res, vol. 93 (2), pp. 120-132, 2011. doi: 10.1016/j.exer.2010.09.005.
  17. E.R. Tamm. The role of the ciliary body in aqueous humor dynamics: structural aspects. In: Besharse J, Dana R, Dartt D (eds) Encyclopedia of the eye. Academic Press, Oxford, pp. 179-186, 2009.
  18. E.R. Tamm. The trabecular meshwork outflow pathways. Functional morphology and surgical aspects. In: Shaarawy TM, Sherwood MB, Hitchings RA, Crowston JG (eds) Glaucoma, vol II. Saunders, Elsevier, Amsterdam, pp. 31-44, 2009.
  19. E.R. Tamm. The trabecular meshwork outflow pathways: structural and functional aspects. Exp Eye Res, vol. 88 (4), pp. 648-655, 2009. doi: 10.1016/j.exer.2009.02.007.
  20. M. Johnson. What controls aqueous humour outflow resistance? Exp Eye Res, vol. 82, pp.545-557, 2006. doi: 10.1016/j.exer.2005.10.011.
  21. D.R. Overby, W.D. Stamer, M. Johnson. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res, vol. 88 (4), pp. 656-670, 2009. doi:10.1016/j.exer.2008.11.033.
  22. R.F. Brubaker. Flow of aqueous humor in humans (the Friedenwald Lecture). Invest Ophthalmol Vis Sci, vol. 32 (13), pp. 3145-3166, 1991.
  23. W.M. Grant. Clinical measurements of aqueous outflow. AMA Arch Ophthalmol, vol. 46, pp. 113-131, 1951.
  24. M. Johnson, D. Chan, A.T. Read, C. Christensen, A. Sit, C.R. Ethier. The pore density in the inner wall endothelium of Schlemm's canal of glaucomatous eyes. Invest Ophthalmol Vis Sci, vol. 43, pp. 2950-2955, 2002.
  25. E.R. Tamm, R. Fuchshofer. What increases outflow resistance in primary open-angle glaucoma? Surv Ophthalmol, no. 52 (2), pp.101-S104, 2007. doi: 10.1016/j.survophthal.2007.08.002.
  26. M. Johnson, K. Erickson. Mechanisms and routes of aqueous humor drainage. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology. Saunders, Philadelphia, pp. 2577-2595, 2000.
  27. M. Johnson. What controls aqueous humour outflow resistance? Exp Eye Res, vol. 82, pp. 545-557, 2006. doi: 10.1016/j.exer.2005.10.011.
  28. J.W. Rohen, R. Witmer. Electron microscopic studies on the trabecular meshwork in glaucoma simplex. Albrecht v Graefes Arch Klin Exp Ophthalmol, vol. 183, pp. 251-266, 1972.
  29. E. Lütjen-Drecoll, T. Shimizu, M. Rohrbach, J.W. Rohen. Quantitative analysis of "plaque material" in the inner and outer wall of Schlemm's canal in normal and glaucomatous eyes. Exp Eye Res, vol. 42, pp. 443-455, 1986.
  30. O.Y. Tektas, E. Lütjen-Drecoll. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res, vol. 88, pp.769-775, 2009. doi: 10.1016/j.exer.2008.11.025.
  31. E. Lütjen-Drecoll. Morphological changes in glaucomatous eyes and the role of TGFbeta2 for the pathogenesis of the disease. Exp Eye Res, vol. 81, pp.1-4, 2005.
  32. J.M. Bradley, J. Vranka, C.M. Colvis, D.M. Conger, J.P. Alexander, A.S. Fisk, J.R. Samples, T.S. Acott. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci, vol. 39, pp. 2649-2658, 1998.
  33. A. Lepple-Wienhues, F. Stahl, M. Wiederholt. Differential smooth muscle-like contractile properties of trabecular meshwork and ciliary muscle. Exp Eye Res, vol. 53, pp. 33-38, 1991.
  34. M. Wiederholt, H. Thieme, F. Stumpff. The regulation of trabecular meshwork and ciliary muscle contractility. Prog Retin Eye Res, vol. 19 (3), pp. 271-295, 2000. doi: 10.1016/s1350-9462(99)00015-4.
  35. B. Tian, B. Geiger, D.L. Epstein, P.L. Kaufman. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci, 41 (3), pp. 619-623, 2000.
  36. B. Tian, B.T. Gabelt, B. Geiger, P.L. Kaufman. The role of the actomyosin system in regulating trabecular fluid outflow. Exp Eye Res, vol. 88, pp. 713-717, 2009. doi: 10.1016/j.exer.2008.08.008.
  37. J.A. Last, T. Pan, Y. Ding, C.M. Reilly, K. Keller, T.S. Acott, M.P. Fautsch, C.J. Murphy, P. Russell. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci, vol. 52, pp. 2147-2152, 2011. doi: 10.1167/iovs.10-6342.
  38. R. Fuchshofer, E.R. Tamm. Modulation of extracellular matrix turnover in the trabecular meshwork. Exp Eye Res, vol. 88, pp. 683-688, 2009. doi: 10.1016/j.exer.2009.01.005.
  39. O.F. Lugovsky, N.V. Chukhrayev. “Ultrasonic cavitation in modern technologies”. (in Ukraine). Kyiv: VPC "Kyiv. Univ.", 244 p., 2007.
  40. O.M. Yakhno, O.O. Lugovska, A.V. Movchanyuk. “Research of possibilities of ultrasonic cavitation cleaning technology of elastic surfaces”. (in Ukraine). 2UDK 621.647.23, NTU of Ukraine "Kyiv Polytechnic Institute", Kyiv. 2010.
  41. O.F. Lugovskyi, A.V. Movchanyuk, I.A. Grishko. “Evaluation of methods Evaluation of methods of water disinfection”. (in Ukraine). Bulletin of the National Technical University of Ukraine. Kyiv Polytechnic Institute. 2008.
  42. E.A. Brujan. The role of cavitation microjets in the therapeutic applications of ultrasound. Ultrasound Med Biol, no. 30 (3), pp. 381-7, 2004. doi: 10.1016/j. ultrasmedbio.2003.10.019.
  43. Y.A. Hrytsenko, S.K. Dmitriev, N.V. Pasechnikova. “An improved method for determining the strength characteristics of the lens in patients with age-related cataract using ultrasonic B-scan data”. (in Ukraine). Ophthalmological Journal, vol.1, pp.96-101, 2015.
  44. G. Czygan, C. Hartung. Mechanical testing of isolated senile human eye lens nuclei. Med. Eng. Phys, no. 18(5), pp. 345-349, 1996.
  45. O.F. Lugovsky, A.V. Movchanyuk, I.M. Bernyk, A.V. Shulga, I.A. Grishko. Hardware support for ultrasonic cavitation technologies. (in Ukraine). Monograph. K:KPI. Named after Igor Sikorsky, 216 p. 2021.
  46. P.M. Chan, M.D. Larson, J.E. Dickerson, K. Mercieca, V.T. Koh, M.R. Chang, R.M. Lim, E.H. Leung, T.W. Samuelson, Ch.L. Larsen, A. Harvey, M. Töteberg-Harms, F. Meier-Gibbons, N.M. Shu-Wen Chan, J.B. Sy, K. Mansouri, X. Zhang, D.S.C. Lam. Minimally Invasive Glaucoma Surgery: Latest Developments and Future Challenges. Asia-Pacific Journal of Ophthalmolog, no. 12(6), pp. 537-564, 2023. doi: 10.1097/APO.0000000000000646.
  47. B.A. Francis, K. Singh, S.C. Lin, et al. Novel glaucoma procedures: a report by the American academy of ophthalmology. Ophthalmology, vol.118, pp. 1466-1480, 2011. doi: 10.1016/j.ophtha.2011.03.028.
  48. C. Kent. MIGS and the general ophthalmologist. Rev Ophthalmol, 2019.
  49. O. Buchacra, S. Duch, E. Milla, et al. One-year analysis of the iStent trabecular microbypass in secondary glaucoma. Clin Ophthalmol, vol. 5, pp. 321-326, 2011. doi: 10.2147/OPTH.S15025.
  50. I. Patel, T.A. de Klerk, L. Au. Manchester iStent study: early results from a prospective UK case series. Clin Experiment Ophthalmol, vol. 41, pp. 648-65, 2013. doi: 10.1111/ceo.12098.
  51. T.W. Samuelson, D.F. Chang, R. Marquis, et al. A Schlemm canal microstent for intraocular pressure reduction in primary open-angle glaucoma and cataract: the HORIZON study. Ophthalmology, vol.126, pp. 29-37, 2019. doi: 10.1016/j.ophtha.2018.05.012.
  52. D.S. Grover, D.G. Godfrey, O. Smith, et al. Gonioscopy-assisted transluminal trabeculotomy, ab interno trabeculotomy. Technique report and preliminary results. Ophthalmology, vol. 121, pp. 855-861, 2014. doi: 10.1016/j.ophtha.2013.11.001.
  53. W.W. Liu, D. Petkovsek, W.S. Shalaby, et al. Four-year surgical outcomes of gonioscopy-assisted transluminal trabeculotomy in patients with open-angle glaucoma. Ophthalmol Glaucoma, vol. 6 (4), pp. 387-394, 2023. doi: 10.1016/j.ogla.2023.01.005.
  54. J.E. Dickerson, K. Dhamdhere. Combined circumferential canaloplasty and trabeculotomy ab interno with the OMNI Surgical System. Front Ophthalmol, vol. 1, pp.106-115, 2021. doi: 10.2147/opth.s362932.
  55. Z.M. Naumkina, V.I. Zubchk. Modernization of the phacoemulsification instrument for different types of oscillations. (in Ukraine). Biomedical Engineering and Technology. vol. 4, pp. 8-13, 2020. doi: 10.20535/2617-8974.2020.4.221831.
  56. Ultrasonic Phacoemulsifier Instrument (2019) пат.№ 2470620; [Electronic resource]. – Resource access mode: https://findpatent.ru/patent/247/2470620.html (date of application 14.05.2019).
  57. S.V. Shargorodsky, O.F. Lugovsky. Possibility of using cavitation microjets to restore the elasticity of the trabeculae of the anterior chamber angle of eyes of patients with glaucoma. (in Ukraine). Youth Innovations in Mechanical Engineering 2024. UDC. 617.7-007.681-073.4:615.472.3,2024. https://imm-mmi.kpi.ua/imm2024/paper/view/ 30446.

Published

2024-12-26

How to Cite

[1]
S. Sharhorodskyi and O. Luhovskyi, “Study of the possibility of using cavitation microcurrents in an ultrasonic scalpel for the glaucoma treatment”, Mech. Adv. Technol., vol. 8, no. 4(103), pp. 397–404, Dec. 2024.

Issue

Section

Mechanics