Formalization of technological processes based on non-Euclidean geometries: spherical and Riemann geometry
DOI:
https://doi.org/10.20535/2521-1943.2025.9.2(105).325989Keywords:
axiomatics of the theory, sphere, great circle, elliptic space, point, line, plane, similarity transformation, separation, duality, quadratic form, interpretationAbstract
It is a continuation of the set of research works [1]–[4] on modeling and formalization in the direction of ideas and concepts of the geometries mentioned above. First of all, it concerns the technological interpretation of geometric images on the sphere, in particular, the elliptical plane. Intersecting or converging lines were studied here - this is a bundle of straight lines with its own vertex or an elliptical bundle. At the same time, at the macro level - in relation to TP, as a set of stages or states of ADS [2], and at the subordinate meso level - to a separate TP stage. In modeling, the surface of the sphere is considered as a spatial analogue of the central great circle (equator), the center of which coincides with the center of the sphere. The “field of action” of these geometries (as well as TP) is the surface of the sphere. And an important transformation of similarity in the theory is considered that the main “constructive” (forming) element is a now connected (glued) pair of diametrically opposite points (or points – antipodes [19] – a conditional “point”. With these antipodal points. The concepts of “line” and “plane” are defined precisely in Riemann’s geometry and in their subsequent technological interpretation. is a set of great circles (TP stages) and in spherical geometry it is a line, then in similarity transformations it is a “line” (a set of conditional “points”) placed on an elliptic plane. Since the elliptic space within the geometry of position contains at least four points, then they are given a technological interpretation with a formal presentation (quadratic form).
References
- KIva D.S. Alternativni tehnologiyi kompozitnih visokonavantazhenih avIakonstruktsIy: yakIsniy metod priynyattya bagatokriterIalnih rishen. I chastina. Pochatkovi etapi v zadachI priynyattya rIshen / D.S.KIva, V.F. Zabashta // Mechanics and Advanced Technologies, № 2, 2021, S.201-211.
- Zabashta V.F. AlternativnI tehnologiyi kompozitnih visokonavantazhenih avIakonstruktsIy: yakIsniy metod priynyattya bagatokriterIalnih rIshen. II chastina. Modelyuvannya v bagatokriterIalnIy otsIntsI alternativ. / V.F. Zabashta // Mechanics and Advanced Technologies, № 2, 2022, S.203-220.
- Zabashta V.F. AlternativnI tehnologiyi kompozitnih visokonavantazhenih avIakonstruktsIy: yakIsniy metod priynyattya bagatokriterIalnih rishen. III chastina. DoslIdzhennya metodologIchnoYi osnovi v priynyattI rIshen tehnologIchnI konstrukti (TK) v Instrumentariyi otsinki. / V.F. Zabashta // Mechanics and Advanced Technologies, # 3, 2023, S.374-388.
- Zabashta V.F. Alternativni tehnologiyi kompozitnih visokonavantazhenih avIakonstruktsIy: yakIsniy metod priynyattya bagatokriterialnih rishen. IV chastina. Rivnovaga ta stIykIst dinamIchnoYi modelI ADS / V.F. Zabashta // Mechanics and Advanced Technologies, № 3, 2024, S.315-331
- Interpretation and analysis of data in sociological research. - M.: Nauka, 1997. - 252 p.
- Dunda S.P. Rozvitok pIdpriEmstva ta otsInka faktorIv, scho na nih vplivayut / S.P. Dunda// Elektronniy resurs «Efektivna ekonomIka», № 12, 2016.
- Informatsiya Internet vidan.
- Stehantsev E.V., Stehantseva P.G. Invariants of the projective plane / E.V. Stehantsev, P.G. Stehantseva - Zaporizhzhia: ZNU, 2011. 85 p.
- Yaglom I.M. Geometriya tochek i geometriya pryamih/ I.M. Yaglom/ – M.: Znanie, 1998. – 44 s.
- Aleksandrov P.S. Scho take neevklidova geometriya/ P.S. Aleksandrov/ – Radyanska shkola, 1954. 61 s.
- Borovik V.M., Yaponets V.P. Kurs vischoYi geometriyi/ V.M. Borovik, V.P. Yaponets. Sumi.: UnIversitetska kniga, 2024. - 461 s.
- Efimov N.V. Vyisshaya geometriya/ N.V. Efimov – M.: Znanie,1981. – 208 s.
- Bohomolov S.A. Vvedenye v neevklydovu heometryiu Rimana/ S.A.Bohomolov – L.: URSS, 281 s
- Kagan V.F. Osnovaniya geometri, ch.2/ V.F. Kagan – M.: Izd-vo «Tehniko – teoreticheskoy literaturyi», 1956. – 353 s.
- Kleyn F.H. Neevklidova geometriya/ F.H. Kleyn – M.: Mir, 2003. – 351 s.
- Aleksandrov A.D., Netsvetaev N.Yu. Geometriya/ A.D. Aleksandrov, N.Yu. Netsvetaev – M.: Nauka. Fizmatlit, 1990. – 672 s.
- Rashevskiy P.K. Rimanova geometriya i tenzornyiy analiz/ P.K. Rashevskiy/ - M.: URSS, 2006. – 664 s.
- Postnikov M.M. Rimanova Geometriya. – M.: Fizmatliz, 1998. – 490 s.
- Matsuo Komadu. Mnogoobraziya geometrii. – M.:Znanie, 1981. – 208 s.
- Rozenfeld B.A. Neevklidovi prostranstva/ B.A. Rozenfeld – M.: Nauka,1969. – 543 s.
- Hartshorn R. Osnovyi proektivnoy geometrii/ R. Hartsorn – Vologda: Platon, 1997. – 190 s.
- 3.4 Elіptichna geometrIya. Libre Texts. Elektronnіy resurs 22.10.2022.
- Kovantsov N.M. Differentsialnaya geometriya. Topologi, tenzornyiy analiz/ N.M. Kovantsov, T.M. Zrazhevskaya, V.G.Eocherevskiy. – K.: Vyisshaya shkola. – 1989. – 397 s.
- Grebenyuk M.F. Kvadratichni formi ta yih zastosuvannya/ M.F. Grebenyuk, O.V. Karulu, L.F. Klopova – K.:NAU, 2004. – 76 s.
- Sivashinskiy I.H. Elementarnyie funktsii i grafiki / I.H. Sivashinskiy – M.:Nauka, 1968. – 279 s.
- Danilevskiy N.M. Osnovi sferichnoуi geometrіуi ta trigonometrіуi/ N.M. Danilevskiy, A.I. Kolosov, A.V. Yakutin – H.: HNAMI, 2011. 92 s.
- Scherba A. Topogeodezichna priv’yazka elementIv boyovogo poryadku pidrozdiliv raketnih viysk i aritelrIyi : Navchalno – metodichniy posibnik / A.Scherba, R. SergIEnko, N. Paschetnik ta In. – LvIv: NASV,2022. – 182 s.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Volodymyr Zabashta

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work