Features of Manufacturing Parts Using Additive Technologies from Metal Alloys. An Analytical Review

Authors

DOI:

https://doi.org/10.20535/2521-1943.2025.9.2(105).326824

Keywords:

machining, additive manufacturing, machinability, anisotropy of microstructure, electron beam melting, Ti6Al4V

Abstract

This article explores current scientific research on the machining process of parts manufactured using additive technologies. The paper presents a brief classification of metal alloys used in the field of additive manufacturing, as well as a classification of 3D printing technologies known to date. The opportunities provided by additive technologies are outlined. The advantages and disadvantages of additive manufacturing in general, and of the most common production methods in particular, are discussed. The results of scientific studies on the influence of printing layer orientation and anisotropy of the product’s microstructure on the machining process are analyzed. Attention is given to the machinability of parts. The lack of research on milling of parts produced by specific printing methods is highlighted. The necessity of conducting scientific research on the machining of titanium alloy Ti6Al4V parts produced by additive technologies is substantiated. 3D printing offers new approaches to the design and manufacturing of products. At this stage of technological development, it is impossible to replace or completely eliminate finish machining from the production chain due to drawbacks associated with thermal and mechanical processes during melting and/or sintering of the material, as well as due to high requirements for surface roughness, dimensional accuracy, and geometric precision of critical surfaces. There remain significant aspects that require further development, optimization, improvement, and investigation. A telling example of this is that leading universities around the world are incorporating credit-bearing modules on hybrid additive-subtractive manufacturing into their educational programs at all levels of higher education.

References

  1. B. Dovgyy, "Assessing the printability of alloys in fusion-based additive manufacturing: towards criteria for alloy selection". Doctoral Thesis. Imperial College London, 2022. DOI: https://doi.org/10.25560/98163.
  2. A. Tkachuk, “Study of hybrid additive technologies as an important component of educational disciplines on technologies of processing materials”, Academic Notes. Series: Pedagogical Sciences, no. 210, pp. 181-187, 2023. DOI: https://doi.org/10.36550/2415-7988-2023-1-210-181-187.
  3. D. O. Pirogov, V. O. Tsybulenko and B. S. Vorontsov, "Mechanical processing of titanium blanks obtained by the additive method", in Materials of the 20th International Scientific and Technical Conference "Heavy Engineering. Problems and Development Prospects", Kramatorsk-Ternopil, Ukraine, 2022, pp. 177-178.
  4. A. V. Kalinin and A. V. Kashenkova, “Study of structure and mechanical properties of AlSi 316L alloy produced by selective laser surfaction of powder components”, Physical Metallurgy and Heat Treatment of Metals, no. 1, pp. 30-33, 2018. DOI: https://doi.org/10.30838/J.PMHTM.2413.240418.30.102.
  5. J. Zhang, Y. Yang, S. Cao, Z. Cao, D. Kovalchuk, S. Wu et al., “Fine equiaxed β grains and superior tensile property in Ti-6Al-4V alloy deposited by coaxial electron beam wire feeding additive manufacturing”, Acta Metallurgica Sinica (English Letters), vol. 33, no. 10, pp. 1311-1320, 2020. DOI: https://doi.org/10.1007/s40195-020-01073-5.
    |
  6. C. Zhang, D. Zou, M. Mazur, J. P. T. Mo, G. Li and S. Ding, “The State of the Art in Machining Additively Manufactured Titanium Alloy Ti-6Al-4V”, Materials, vol. 16, no. 7, p. 2583, 2023. DOI: https://doi.org/10.3390/ma16072583.
    | |
  7. B. E. Carroll, T. A. Palmer and A. M. Beese, "Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing", Acta Materialia, vol. 87, pp. 309-320, 2015. DOI: https://doi.org/10.1016/j.actamat.2014.12.054.
    |
  8. A. Fortunato, A. Lulaj, S. Melkote, E. Liverani, A. Ascari and D. Umbrello, “Milling of maraging steel components produced by selective laser melting”, The International Journal of Advanced Manufacturing Technology, vol. 94, no. 5-8, pp. 1895-1902, 2018. DOI: https://doi.org/10.1007/s00170-017-0922-9.
    |
  9. P. Guo, B. Zou, C. Huang and H. Gao, “Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition”, Journal of Materials Processing Technology, vol. 240, pp. 12-22, 2017. DOI: https://doi.org/10.1016/j.jmatprotec.2016.09.005.
    |
  10. M. B. Kumar and P. Sathiya, “Methods and materials for additive manufacturing: A critical review on advancements and challenges”, Thin-Walled Structures, vol. 159, p. 107228, 2021. DOI: https://doi.org/10.1016/j.tws.2020.107228.
    |
  11. G. Jing and Z. Wang, “Defects, densification mechanism and mechanical properties of 300M steel deposited by high power selective laser melting”, Additive Manufacturing, vol. 38, p. 101831, 2021. DOI: https://doi.org/10.1016/j.addma.2020.101831.
    |
  12. P. Kürnsteiner, M. B. Wilms, A. Weisheit, B. Gault, E. A. Jägle and D. Raabe, “High-strength Damascus steel by additive manufacturing”, Nature, vol. 582, pp. 515-519, 2020. DOI: https://doi.org/10.1038/s41586-020-2409-3.
    | |
  13. P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe and E. A. Jägle, “Steels in additive manufacturing: A review of their microstructure and properties”, Materials Science and Engineering: A, vol. 772, p. 138633, 2020. DOI: https://doi.org/10.1016/j.msea.2019.138633.
    |
  14. M. Skrzyniarz, L. Nowakowski and S. Blasiak, “Geometry, Structure and Surface Quality of a Maraging Steel Milling Cutter Printed by Direct Metal Laser Melting", Materials, vol. 15, no. 3, p. 773, 2022. DOI: https://doi.org/10.3390/ma15030773.
    | |
  15. H. Chunping, L. Xin, L. Fencheng, C. Jun, L. Fenggang and H. Weidong, “Effects of cooling condition on microstructure and mechanical properties in laser rapid forming of 34CrNiMo6 thin-wall component”, The International Journal of Advanced Manufacturing Technology, vol. 82, no. 5-8, pp. 1269-1279, 2016. DOI: https://doi.org/10.1007/s00170-015-7453-z.
    |
  16. F. Liu, X. Lin, H. Yang, X. Wen, Q. Li, F. Liu and W. Huang, “Effect of microstructure on the fatigue crack growth behavior of laser solid formed 300M steel”, Materials Science and Engineering: A, vol. 695, pp. 258-264, 2017. DOI: https://doi.org/10.1016/j.msea.2017.04.001.
    |
  17. C. E. Roberts, D. Bourell, T. Watt and J. Cohen, “A Novel Processing Approach for Additive Manufacturing of Commercial Aluminum Alloys”, Physics Procedia, vol. 83, pp. 909-917, 2016. DOI: https://doi.org/10.1016/j.phpro.2016.08.095.
    |
  18. D. Bourell, J. P. Kruth, M. Leu, G. Levy, D. Rosen, A. M. Beese and A. Clare, “Materials for additive manufacturing”, CIRP Annals, vol. 66, no. 2, pp. 659-681, 2017. DOI: https://doi.org/10.1016/j.cirp.2017.05.009.
    |
  19. R. Karunakaran, S. Ortgies, A. Tamayol, F. Bobaru and M. P. Sealy, “Additive manufacturing of magnesium alloys”, Bioactive Materials, vol. 5, no. 1, pp. 44-54, 2020. DOI: https://doi.org/10.1016/j.bioactmat.2019.12.004.
    | |
  20. Z. Szakál, A. Kári-Horváth, T. Pataki and M. Odrobina, “The Mechanical Properties of 3D Printed CuZn28 Brass Specimens with Different Orientations”, International Journal of Engineering and Management Sciences, vol. 4, no. 1, pp. 253-259, 2019. DOI: https://doi.org/10.21791/IJEMS.2019.1.32.
  21. S. Scudino, C. Unterdörfer, K. G. Prashanth, H. Attar, N. Ellendt, V. Uhlenwinkel and J. Eckert, “Additive manufacturing of Cu-10Sn bronze”, Materials Letters, vol. 156, pp. 202-204, 2015. DOI: https://doi.org/10.1016/j.matlet.2015.05.076.
  22. A. Zykova, A. Panfilov, A. Chumaevskii, A. Vorontsov, E. Moskvichev, S. Nikonov et al., “In-situ dispersion hardened aluminum bronze/steel composites prepared using a double wire electron beam additive manufacturing”, Progress in Additive Manufacturing, vol. 8, no. 5, pp. 1067-1082, 2023. DOI: https://doi.org/10.1007/s40964-022-00378-4.
  23. A. Gatto, M. L. Gatto, R. Groppo, D. Munteanu and P. Mengucci, “Influence of laser powder bed fusion process parameters on the properties of CuZn42 components: case study of the laser surface energy density”, Progress in Additive Manufacturing, vol. 8, no. 5, pp. 843-855, 2023. DOI: https://doi.org/10.1007/s40964-022-00361-z.
  24. S. Zhang, H. Zhu, Z. Hu, X. Zeng and F. Zhong, “Selective Laser Melting of Cu-10Zn alloy powder using high laser power”, Powder Technology, vol. 342, pp. 613-620, 2019. DOI: https://doi.org/10.1016/j.powtec.2018.10.002.
  25. X. Wang, X. Gong and K. Chou, “Review on powder-bed laser additive manufacturing of Inconel 718 parts”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 231, no. 11, pp. 1890-1903, 2017. DOI: https://doi.org/10.1177/0954405415619883.
  26. S. Acharya, R. Soni, S. Suwas and K. Chatterjee, “Additive manufacturing of Co-Cr alloys for biomedical applications: A concise review”, Journal of Materials Research, vol. 36, no. 19, pp. 3746-3760, 2021. DOI: https://doi.org/10.1557/s43578-021-00244-z.
  27. C. V. Mikler, V. Chaudhary, T. Borkar, V. Soni, D. Jaeger, X. Chen et al., “Laser Additive Manufacturing of Magnetic Materials”, JOM, vol. 69, no. 3, pp. 532-543, 2017. DOI: https://doi.org/10.1007/s11837-017-2257-2.
  28. B. Zhang, N.-E. Fenineche, L. Zhu, H. Liao and C. Coddet, “Studies of magnetic properties of permalloy (Fe-30%Ni) prepared by SLM technology”, Journal of Magnetism and Magnetic Materials, vol. 324, no. 4, pp. 495-500, 2012. DOI: https://doi.org/10.1016/j.jmmm.2011.08.030.
    |
  29. R. Conteri, T. Borkar, S. Nag, D. Jaeger, X. Chen, R. V. Ramanujan and R. Banerjee, “Laser additive processing of Fe-Si-B-Cu-Nb magnetic alloys”, Journal of Manufacturing Processes, vol. 29, pp. 175-181, 2017. DOI: https://doi.org/10.1016/j.jmapro.2017.07.029.
    |
  30. W. Grzesik, “Hybrid additive and subtractive manufacturing processes and systems: A review”, Journal of Machine Engineering, vol. 18, no. 4, pp. 5-24, 2018. DOI: https://doi.org/10.5604/01.3001.0012.7629.
    |
  31. B. Zhang, Y. Li and Q. Bai, “Defect Formation Mechanisms in Selective Laser Melting: A Review”, Chinese Journal of Mechanical Engineering, vol. 30, no. 3, pp. 515-527, 2017. DOI: https://doi.org/10.1007/s10033-017-0121-5.
    |
  32. T. Vilaro, C. Colin and J. D. Bartout, “As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting”, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 42, no. 10, pp. 3190-3199, 2011. DOI: https://doi.org/10.1007/s11661-011-0731-y.
    |
  33. H. Gong, K. Rafi, H. Gu, T. Starr and B. Stucker, “Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes”, Additive Manufacturing, vol. 1-4, pp. 87-98, 2014. DOI: https://doi.org/10.1016/j.addma.2014.08.002.
  34. D. Gu, Y.-C. Hagedorn, W. Meiners, G. Meng, R. J. S. Batista, K. Wissenbach and R. Poprawe, “Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium”, Acta Materialia, vol. 60, no. 9, pp. 3849-3860, 2012. DOI: https://doi.org/10.1016/j.actamat.2012.04.006.
    |
  35. Z. Chen, H. Ye and H. Xu, “Distortion control in a wire-fed electron-beam thin-walled Ti-6Al-4V freeform”, Journal of Materials Processing Technology, vol. 258, pp. 286-295, 2018. DOI: https://doi.org/10.1016/j.jmatprotec.2018.04.008.
    |
  36. D. Ding, Z. Pan, D. Cuiuri and H. Li, “Wire-feed additive manufacturing of metal components: technologies, developments and future interests”, The International Journal of Advanced Manufacturing Technology, vol. 81, no. 1-4, pp. 465-481, 2015. DOI: https://doi.org/10.1007/s00170-015-7077-3.
    |
  37. Y. Kok, X. P. Tan, P. Wang, M. L. S. Nai, N. H. Loh, E. Liu and S. B. Tor, “Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review”, Materials & Design, vol. 139, pp. 565-586, 2018. DOI: https://doi.org/10.1016/j.matdes.2017.11.021.
    |
  38. J. Allum, A. Moetazedian, A. Gleadall and V. V. Silberschmidt, “Discussion on the microscale geometry as the dominant factor for strength anisotropy in material extrusion additive manufacturing”, Additive Manufacturing, vol. 48, Part A, p. 102390, 2021. DOI: https://doi.org/10.1016/j.addma.2021.102390.
    |
  39. E. V. Melnikov, E. G. Astafurova, S. V. Astafurov, G. G. Maier, V. A. Moskvina, M. Y. Panchenko et al., “Anisotropy of the tensile properties in austenitic stainless steel obtained by wire-feed electron beam additive growth”, Letters on Materials, vol. 9, no. 4, pp. 460-464, 2019. DOI: https://doi.org/10.22226/2410-3535-2019-4-460-464.
    |
  40. T. Lieneke, G. A. O. Adam, S. Leuders, F. Knoop, S. Josupeit, P. Delfs et al., "Systematical Determination of Tolerances for Additive Manufacturing by Measuring Linear Dimensions", in Proceedings 26th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2015, Austin, Texas, USA, 2015, pp. 371-384. Available: https://repositories.lib.utexas.edu/items/2abbbea1-f4c1-4b90-95cc-5441e9e30793.
  41. K. Manjunath, S. Tewary, N. Khatri and K. Cheng, “Simulation-based investigation on ultra-precision machining of additively manufactured Ti-6Al-4V ELI alloy and the associated experimental study”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 238, no. 10, pp. 1554-1567, 2023. DOI: https://doi.org/10.1177/09544054231196920.
    |
  42. Q. Shi, Recycling of Titanium Alloys from Machining Chips using Equal Channel Angular Pressing: Doctoral Thesis. Loughborough University, 2015. Available: https://core.ac.uk/download/288374302.pdf.
  43. S. Rossi, F. Deflorian and F. Venturini, “Improvement of surface finishing and corrosion resistance of prototypes produced by direct metal laser sintering”, Journal of materials processing technology, vol. 148, no. 3, pp. 301-309, 2004. DOI: https://doi.org/10.1016/j.jmatprotec.2003.02.001.
  44. E. Liverani, S. Toschi, L. Ceschini and A. Fortunato, “Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel”, Journal of Materials Processing Technology, vol. 249, pp. 255-263, 2017. DOI: https://doi.org/10.1016/j.jmatprotec.2017.05.042.
  45. K. N. Amato, S. M. Gaytan, L. E. Murr, E. Martinez, P. W. Shindo, J. Hernandez et al., “Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting”, Acta Materialia, vol. 60, no. 5, pp. 2229-2239, 2012. DOI: https://doi.org/10.1016/j.actamat.2011.12.032.
  46. L. Thijs, M. L. Montero Sistiaga, R. Wauthle, Q. Xie, J.-P. Kruth and J. Van Humbeeck, “Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum”, Acta Materialia, vol. 61, no. 12, pp. 4657-4668, 2013. DOI: https://doi.org/10.1016/j.actamat.2013.04.036.
  47. E. Segebade, M. Gerstenmeyer, S. Dietrich, F. Zanger and V. Schulze, “Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting”, Procedia CIRP, vol. 82, pp. 113-118, 2019. DOI: https://doi.org/10.1016/j.procir.2019.04.043.
  48. P. Fernandez-Zelaia, V. Nguyen, H. Zhang, A. Kumar and S. N. Melkote, “The effects of material anisotropy on secondary processing of additively manufactured CoCrMo”, Additive Manufacturing, vol. 29, p. 100764, 2019. DOI: https://doi.org/10.1016/j.addma.2019.06.015.
  49. F. Hojati, A. Daneshi, B. Soltani, B. Azarhoushang and D. Biermann, “Study on machinability of additively manufactured and conventional titanium alloys in micro-milling process”, Precision Engineering, vol. 62, pp. 1-9, 2020. DOI: https://doi.org/10.1016/j.precisioneng.2019.11.002.
  50. M. Simonelli, Y. Y. Tse and C. Tuck, “Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V”, Materials Science and Engineering: A, vol. 616, pp. 1-11, 2014. DOI: https://doi.org/10.1016/j.msea.2014.07.086.
  51. L. Lizzul, M. Sorgato, R. Bertolini, A. Ghiotti and S. Bruschi, “Influence of additive manufacturing-induced anisotropy on tool wear in end milling of Ti6Al4V”, Tribology International, vol. 146, p. 106200, 2020. DOI: https://doi.org/10.1016/j.triboint.2020.106200.
  52. L. Lizzul, R. Bertolini, A. Ghiotti and S. Bruschi, “Effect of AM-induced Anisotropy on the Surface Integrity of Laser Powder Bed Fused Ti6Al4V Machined Parts”, Procedia Manufacturing, vol. 47, pp. 505-510, 2020. DOI: https://doi.org/10.1016/j.promfg.2020.04.149.
  53. L. Lizzul, M. Sorgato, R. Bertolini, A. Ghiotti and S. Bruschi, “Anisotropy effect of additively manufactured Ti6Al4V titanium alloy on surface quality after milling”, Precision Engineering, vol. 67, pp. 301-310, 2021. DOI: https://doi.org/10.1016/j.precisioneng.2020.10.003.
  54. H. Taylor, Engineering 27 – Introduction to Manufacturing and Tolerancing, 2017. Available: https://jacobsinstitute.berkeley.edu/wp-content/uploads/2017/05/E27-Spring-2017-syllabus-and-schedule.pdf.
  55. Course: Production Systems and Processes (TØL4012). NTNU. Available: https://www.ntnu.edu/studies/courses/T%C3%98L4012#tab=omEmnet.
  56. Examination in Ultra Precision Engineering for the degree of Master of Research, 2018-19. Cambridge University Reporter. Available: https://www.admin.cam.ac.uk/reporter/2017-18/weekly/6516/section5.shtml#heading2-29.
  57. S. Dixit and S. Liu, “Laser Additive Manufacturing of High-Strength Aluminum Alloys: Challenges and Strategies”, Journal of Manufacturing and Materials Processing, vol. 6, no. 6, p. 156, 2022. DOI: https://doi.org/10.3390/jmmp6060156.
  58. P. Nandwana, A. M. Elliott, D. Siddel, A. Merriman, W. H. Peter and S. S. Babu, “Powder bed binder jet 3D printing of Inconel 718: Densification, microstructural evolution and challenges☆”, Current Opinion in Solid State and Materials Science, vol. 21, no. 4, pp. 207-218, 2017. DOI: https://doi.org/10.1016/j.cossms.2016.12.002.
    |
  59. A. Kurdi, A. Aldoshan, F. Alshabouna, A. Alodadi, A. Degnah, H. Alnaser et al., “Investigation into the Microstructure and Hardness of Additively Manufactured (3D-Printed) Inconel 718 Alloy”, Materials, vol. 16, no. 6, p. 2383, 2023. DOI: https://doi.org/10.3390/ma16062383.
    | |
  60. Annual Report SLM Solutions 2020. Nikon-slm-solutions.com. Available: https://nikon-slm-solutions.com/wp-content/uploads/2024/10/Annual-Report-SLM-2020.pdf.
  61. S. Käfer, EOS stellt neue Core- und Premiumprodukte vor. Maschinenmarkt.vogel.de, 2020. Available: https://www.maschinenmarkt.vogel.de/eos-stellt-neue-core-und-premiumprodukte-vor-a-951728/#.
  62. R. Frohwerk, The casting industry meets the future with integrated 3D printing. Nikon-slm-solutions.com, 2025. Available: https://nikon-slm-solutions.com/addictive-additive/the-casting-industry-meets-the-future-with-integrated-3d-printing/.
  63. Medical 3D printer M 300-4 by EOS GmbH Electro Optical Systems. Medicalexpo.com. Available: https://www.medicalexpo.com/prod/eos-gmbh-electro-optical-systems/product-72628-871437.html.

Published

2025-06-26

How to Cite

[1]
O. Sonets and B. Vorontsov, “Features of Manufacturing Parts Using Additive Technologies from Metal Alloys. An Analytical Review”, Mech. Adv. Technol., vol. 9, no. 2(105), pp. 185–194, Jun. 2025.

Issue

Section

Advanced Mechanical Engineering and Manufacturing Technologies