Numerical Analysis of 2D Elastic Torsion Problem for a Rod by the Method of Matched Sections

Authors

  • Kostiantyn Slovak Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» , Ukraine image/svg+xml https://orcid.org/0009-0001-0266-7672
  • Igor Orynyak Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» , Ukraine image/svg+xml https://orcid.org/0000-0003-4529-0235
  • Kirill Danylenko Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» , Ukraine image/svg+xml https://orcid.org/0009-0007-6101-6582

DOI:

https://doi.org/10.20535/2521-1943.2025.9.4(107).340386

Keywords:

Method of matched sections, transfer matrix method, elastic plane body, torque, angle of rotation, boundary conditions

Abstract

Torsion problem is treated here as Saint Venant’s semi-inverse task for prismatic bars, which allows to consider 2D geometry instead of 3D one. The novelty of the paper is that at the first time it tackles the problem by the method of matched section, MMS, – a new numerical approach for multiphysics problems. Like finite element method it supposes the continuous distribution of all parameters within the element, and like volume element method it keeps the conservation laws and equilibrium for each element and the body as a whole. The main idea of MMS is to substitute the partial differential equations (stemmed from required conservation laws) by the ordinary ones by introducing the additional constants, which can be later found from the continuity conditions at the center of element. The governing equations for torsion are broken out on two independent (along each coordinate axis passed through the centers of the opposite sides) equations, which relate two governing parameters (angle of rotation and torque) at the beginning with those at the end of the element. Each element contains 8 unknowns, so 4 above connection equations are supplemented by continuity conditions between elements and the boundary conditions. In addition to rectangular element the simplified version of the triangular one is proposed which is used to account for the outer boundary configuration. Numerical verification is performed for different shapes of cross-section and for composite cross-section. The results show the efficiency of the method, and high accuracy is attained even for small grids.

References

  1. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. New York, NY, USA: McGraw-Hill, 1970, p. 608.
  2. T. G. Sitharam and L. Govindaraju, Theory of Elasticity, Cham, Switzerland: Springer Nature, 2021.
  3. J. F. Ely and O. C. Zienkiewicz, “Torsion of compound bars–A relaxation solution,” Int. J. Mech. Sci., vol. 1, no. 4, pp. 356–365, 1960.
  4. B. Xu, R. Zhang, K. Yang, G. Yu, and Y. Chen, “Application of generalized finite difference method for elastoplastic torsion analysis of prismatic bars,” Eng. Anal. Bound. Elem., vol. 146, pp. 939–950, 2023. doi: https://doi.org/10.1016/j.enganabound.2022.11.028.
  5. E. J. Sapountzakis, “Nonuniform torsion of multi-material composite bars by the boundary element method,” Comput. Struct., vol. 79, no. 32, pp. 2805–2816, 2001. doi: https://doi.org/10.1016/S0045-7949(01)00147-X .
  6. E. J. Sapountzakis and V. G. Mokos, “Warping shear stresses in nonuniform torsion of composite bars by BEM,” Comput. Methods Appl. Mech. Eng., vol. 192, no. 39–40, pp. 4337–4353, 2003. doi: https://doi.org/10.1016/S0045-7825(03)00417-1 .
  7. M. Paradiso, N. Vaiana, S. Sessa, F. Marmo, and L. Rosati, “A BEM approach to the evaluation of warping functions in the Saint Venant theory,” Eng. Anal. Bound. Elem., vol. 113, pp. 359–371, 2020. doi: https://doi.org/10.1016/j.enganabound.2020.01.004 .
  8. Q. Z. Xiao, B. L. Karihaloo, Z. R. Li, and F. W. Williams, “An improved hybrid-stress element approach to torsion of shafts,” Comput. Struct., vol. 71, no. 5, pp. 535–563, 1999. doi: https://doi.org/10.1016/S0045-7949(98)00245-4 .
  9. Z. Li, J. M. Ko, and Y. Q. Ni, “Torsional rigidity of reinforced concrete bars with arbitrary sectional shape,” Finite Elem. Anal. Des., vol. 35, no. 4, pp. 349–361, 2000. doi: https://doi.org/10.1016/S0168-874X(99)00075-X .
  10. A. Beheshti, “A numerical analysis of Saint-Venant torsion in strain-gradient bars,” Eur. J. Mech. A/Solids, vol. 70, pp. 181–190, 2018. doi: https://doi.org/10.1016/j.euromechsol.2018.02.001 .
  11. F. Gruttmann, R. Sauer, and W. Wagner, “Shear stresses in prismatic beams with arbitrary cross-sections,” Int. J. Numer. Meth-ods Eng., vol. 45, no. 7, pp. 865–889, 1999. doi: https://doi.org/10.1002/(SICI)1097-0207(19990710)45:7<865::AID-NME609>3.0.CO;2-3.
  12. S. Y. Fialko and D. E. Lumelskyy, “On numerical realization of the problem of torsion and bending of prismatic bars of arbitrary cross section,” J. Math. Sci., vol. 192, no. 6, pp. 664–681, 2013. doi: https://doi.org/10.1007/s10958-013-1424-4 .
  13. D. B. Tran, J. Navrátil, and M. Čermák, “An efficiency method for assessment of shear stress in prismatic beams with arbitrary cross-sections,” Sustainability, vol. 13, no. 2, p. 687, 2021. doi: https://doi.org/10.3390/su13020687
  14. J. M. de Almeida and E. A. Maunder, Equilibrium Finite Element Formulations. Chichester, U.K.: Wiley, 2017, doi: https://doi.org/10.1002/9781118925782 .
  15. P. Cardiff and I. Demirdžić, “Thirty years of the finite volume method for solid mechanics,” Arch. Comput. Methods Eng., vol. 28, no. 5, pp. 3721–3780, 2021. doi: https://doi.org/10.1007/s11831-020-09523-0 .
  16. H. Chen, J. Gomez, and M. J. Pindera, “Saint Venant’s torsion of homogeneous and composite bars by the finite volume meth-od,” Compos. Struct., vol. 242, p. 112128, 2020. doi: https://doi.org/10.1016/j.compstruct.2020.112128
  17. Y. Bansal and M. J. Pindera, “Efficient reformulation of the thermoelastic higher-order theory for functionally graded materials,” J. Thermal Stresses, vol. 26, no. 11–12, pp. 1055–1092, 2003. doi: https://doi.org/10.1080/714050872
  18. H. Chen, J. Gomez, and M. J. Pindera, “Parametric finite-volume method for Saint Venant’s torsion of arbitrarily shaped cross sections,” Compos. Struct., vol. 256, p. 113052, 2021. doi: https://doi.org/10.1016/j.compstruct.2020.113052
  19. I. Orynyak and K. Danylenko, “Method of matched sections as a beam-like approach for plate analysis,” Finite Elem. Anal. Des., vol. 230, p. 104103, 2024. doi: https://doi.org/10.1016/j.finel.2023.104103 .
  20. Orynyak I., & Danylenko, K., (2023). Method of matched sections in application to thin-walled and Mindlin rectangular plates. Mechanics and Advanced Technologies, 7(2). https://doi.org/10.20535/2521-1943.2023.7.2.277341
  21. K. Danylenko and I. Orynyak, “Numeric analysis of elastic plane body static problem by the method of matched sections,” Mech. Adv. Technol., vol. 8, no. 4(103), pp. 428–439, Dec. 2024. doi: https://doi.org/10.20535/2521-1943.2024.8.4(103).313412 .
  22. I. Orynyak, A. Tsybulnyk, K. Danylenko, and A. Orynyak, (2024). “Implicit direct time integration of the heat conduction prob-lem in the Method of Matched Sections”, Mech. Adv. Technol., vol. 8, no. 1(100), pp. 87–97, Mar. 2024. doi.org/10.20535/2521-1943.2024.8.1(100).299059 .
  23. I. Orynyak, A. Tsybulnyk, and K. Danylenko, “Spectral realization of the method of matched sections for thin-plate vibration,” Arch. Appl. Mech., vol. 95, no. 2, p. 51, 2025. doi: https://doi.org/10.1007/s00419-024-02755-7.
  24. N. A. Gloumakoff and Y. Y. Yu, “Torsion of bars with isosceles triangular and diamond sections,” ASME J. Appl. Mech., vol. 31, no. 2, pp. 287–292, 1964. doi: https://doi.org/10.1115/1.3629608 .
  25. H. Chen, Saint Venant’s Torsion by the Finite-Volume Method. M.S. thesis, Univ. of Virginia, Charlottesville, VA, USA, 2023, p. 117.

Downloads

Published

2025-12-29

How to Cite

[1]
K. Slovak, I. Orynyak, and K. Danylenko, “Numerical Analysis of 2D Elastic Torsion Problem for a Rod by the Method of Matched Sections”, Mech. Adv. Technol., vol. 9, no. 4(107), pp. 401–408, Dec. 2025.

Issue

Section

Mechanics