Stress concentration in nonlinear viscoelastic composites


  • B. Maslov S.P. Timoshenko Institute of Mechanics NAS Ukraine, Kyiv, Ukraine



viscoelastic composite, nonlinear deformation, hereditary kernel, identification, computer modeling


A nonlinear viscoelastic problem of the mechanics of composites is solved within the framework of a second-order nonlinear theory. A viscoelastic functional is used to construct general defining relations. A stochastic boundary value problem for determining the stress concentration and its relaxation in polymer composite materials (PCM) is solved. To derive the complete system of second-order viscoelastic equations, the method of successive approximation is used. A generalization of the correspondence principle to nonlinear viscoelastic media is obtained. The relaxation functions averaged over the viscoelastic matrix and elastic inclusions and the stress concentration parameters are determined. Examples are given showing the importance of the mutual influence of nonlinear elastic and viscous properties of the components on stress redistribution near inclusions in multicomponent PCMs. As a practical result, one can note the possibility of predicting the long-term strength of a material when a viscoelastic stress field is known near inclusions.

Author Biography

B. Maslov, S.P. Timoshenko Institute of Mechanics NAS Ukraine, Kyiv

відділ механіки повзучості,

головний науковий співробітник


  1. Aboudi, J., Arnold, S. and Bednarcyk B. (2013), Micromechanics of Composite Materials, Elsevier.
  2. Kiva, D.S., Maslov, B.P. and Klimuk, A.N. (2006), “Conceptual approach to reliability parameter determination for CM airframe assemblies”, Sb. Nauchnyx trudov Nacyonalnoho aerokosmycheskoho unyversyteta im. N.E. Zhukovskoho KhAU, No 32, pp. 5-13.
  3. Kryshchuk, M., Mishchenko, O. and Ieshchenko, A. (2016), “Biomechanical state in the process stress relaxation jaw bone when installing implants”, Visnyk NTUU «KPI», Seriya mashynobuduvannya, No 2 (77), pp. 125-131, DOI:
  4. Biot, M.A. (1965), Mechanics of incremental deformations, John Willey and Sons, New York.
  5. Maslov, B.P. (2008), “Thermal-stress concentration near inclusions in viscoelastic random composites”, Journal of Engineering Mathematics, 61, pp. 339-355.
  6. Golub, V.P., Maslov, B.P. and Fernati, P.V. (2016), “Hereditary kernels identification for isotropic viscoelastic materials under complex loading”, International Applied Mechanics, 53, no 2, pp. 1-8.
  7. Marsden, J.E. and Hughes, T.J.R. (1983), Mathematical foundations of elasticity, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
  8. Maslov, B.P. (2000), “Stress concentration in non-compressible multi-component material”, Int. Appl. Mech, 36(3), pp. 108-114.
  9. Laws, N. and McLanghlin, R. (1978), Self-Consistent Estimates for Viscoelastic Creep Compliances of Composite Materials, Proc. R. Soc. Lond. A. 359, doi: 10.1098/rspa. 1978. 0041, published 15 February 1978 pp. 251-273.
  10. Maksimov, R.D. and Plume, E. (2001), “Long-Term Creep of Hybrid Aramid, Glass-Fiber-Reinforced Plastics”, Mechanics of Composite Materials, 37, no 4, pp. 271-280.




How to Cite

B. Maslov, “Stress concentration in nonlinear viscoelastic composites”, Mech. Adv. Technol., no. 1(79), pp. 5–10, Jun. 2017.



Original study