Engineering method for research of stress state in concentration areas of welded joints with symmetrical reinforcement

Authors

  • А. Moltasov Институт электросварки им. Е.О. Патона НАН Украины, Ukraine
  • P. Tkach Институт электросварки им. Е.О. Патона НАН Украины, Ukraine
  • S. Motrunich Институт электросварки им. Е.О. Патона НАН Украины, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2017.79.94900

Keywords:

welded joint, symmetrical reinforcement, stress state, stress concentration, transition radius from weld to the base metal, reliability area, hypothesis of broken cross sections

Abstract

Abstract. Subject, theme, aim. The subject of research in this work is the stress distribution in stress concentration areas of welded
joints with double-sided symmetrical reinforcement. The topic of this work is related to development of engineering method of
describing the stress state in the transition areas of weld to the base metal of butt and cruciform welded joints. The aim consists in 
establishing of mathematical relationships that describe the change of the first principal stress on the contour of the investigated area, and in the depth of the welded joint at tension and bending.
Method or methodology. In order to establish the equilibrium conditions which exist in the section of stresses at external force factors in the development of research method of stress state was used the hypothesis of broken cross sections. Mathematical
dependences which describe the stress distribution in the areas of concentration, and the formulas for determining of stress concentration factor was obtained by means of developed method, and the adequacy of these formulas was verified by numerical
calculation by finite element method.
Results. Using the formulas which corresponding to the tenets of the proposed method for butt-welded joints with a relative transition radius from weld to the base metal between 0,4 and 2,6 the SCF was calculated. Comparative analysis of the obtained results with the results of numerical calculation by finite element method showed that the maximum deviation for tension was 1,10%, and for bending it was 0,91%.
Field of application of the results. The formulas which obtained in the result of research can be used for the calculation of stress concentration factor in the butt and cruciform welded joints with a high value of the relative transition radius from weld to the base
metal.

Author Biographies

А. Moltasov, Институт электросварки им. Е.О. Патона НАН Украины

Отдел № 3 "Прочность сварных конструкций", старший научный сотрудник

P. Tkach, Институт электросварки им. Е.О. Патона НАН Украины

Отдел № 3 "Прочность сварных конструкций", старший научный сотрудник

S. Motrunich, Институт электросварки им. Е.О. Патона НАН Украины

Отдел № 3 "Прочность сварных конструкций", младший научный сотрудник

References

  1. Stakanov, V.I., Kostylev, V.I. and Rybin, Ju.I. (1987), “About the calculation of stress concentration factor in butt welded joints”, Avtomaticheskaja svarka, no. 11, pp. 19–23.
  2. Mahnenko, V.I. and Mosenkis, R.Ju. (1985), “Calculation of stress concentration factors in welded joints with butt and fillet welds”, Avtomaticheskaja svarka, no. 8, pp. 7–18.
  3. Karhin, V.A., Kostylev, V.I. and Stakanov, V.I. (1988), “Influence of geometric parameters of the butt, tee and cruciform joints on stress concentration factor”, Avtomaticheskaja svarka, no. 3, pp. 6–11.
  4. Bel'chuk, G.A. (1964), Priblizhennyj raschjot geometricheskoj formy i kojefficienta koncentracii naprjazhenij svarnyh stykovyh soedinenij po rezhimu svarki [An approximate calculation of the geometrical shape and the stress concentration factor of welded joints according to welding mode], LDNTP, Leningrad, Russia.
  5. Trufjakov, V.I., Dvoreckij, V.I., Miheev, P.P. and dr. (1990), “Prochnost' svarnyh soedinenij pri peremennyh nagruzkah” [The strength of welded joints under variable loads], in Trufjakov, V.I. (ed.), Naukova dumka, Kiev, Ukraine.
  6. Lobanov, L.M., Kyr"yan, V.I., Knysh, V.V. (2006), “Resource improving of welded metal structures by high-frequency mechanical forging”, Fizyko-khimichna mekhanika materialiv, no. 1, p. 56–61.
  7. Knysh, V.V., Klochkov, I.N., Pashulja, M.P. and Motrunich, S.I. (2014), “Increasing of fatigue resistance of thin sheet aluminum alloy welded joints by high-frequency forging”, Avtomaticheskaja svarka, no. 5, p. 22–29.
  8. Klochkov, I.N. (2013), Increasing of durability of thin sheet aluminum alloy welded joints by high-frequency forging: dissertation [Povyshenie dolgovechnosti tonkolistovyh svarnyh soedinenij aljuminievyh splavov vysokochastotnoj prokovkoj: dis. kand. tehn. nauk], Kiev, Ukraine.
  9. Verhovskij, A.V. (1947), “The hypothesis of broken cross sections and its application to the calculation of bars with complex configuration”, Izvestija TPI, no. 1 (61), p. 3–46.
  10. Verhovskij, A.V., Andronov, V.P., Ionov, V.A. and dr. (1958), Opredelenie naprjazhenij v opasnyh sechenijah detalej slozhnoj formy. Metod neploskih sechenij [Determination of the stresses in the dangerous sections of elements with complex shapes. The method of non-planar cross sections], Mashgiz, Moscow, Russia.
  11. Moltasov, A.V., Tkach, P.N., Gogolev, A.Ja. and dr. (2016), Static strength evaluation of welded disk of rotor exhauster Avtomaticheskaja svarka, no. 12, pp. 46–53.
  12. Moltasov, A.V. (2015), Razrabotka metodov raschjota silovyh parametrov kontaktnoj stykovoj svarki kol'cevyh izdelij: dis. kand. tehn. Nauk [Development of methods for the calculation of power parameters for flash butt welding of ring products: dissertation], Kiev, Ukraine.
  13. Moltasov, A.V. (2013), “Application of the non-planar cross sections to stress definition in the areas of concentration caused by the reinforcement of butt weld”, Problemy prochnosti, no.1, pp. 159–167.
  14. Bel'chuk, G.A. (1969), Svarnye soedinenija v korpusnyh konstrukcijah [Welded joints in hull constructions], Sudostroenie, Leningrad, Russia.
  15. Rybin, Ju.I., Stakanov, V.I., Kostylev, V.I. and dr. (1982), Investigation the influence of geometrical parameters of T-joints and cruciform welded joints on stress concentration by finite element method, Avtomaticheskaja svarka, no. 5, pp. 16–20.
  16. Rudakov, K.M. (2007), Numerical analysis methods in dynamics and strength of structures: Textbook [Chysel'ni metody analizu v dynamitsi ta mitsnosti konstruktsiy: Navch. Posibnyk], NTUU “KPI”, Kyiv, Ukraine.
  17. Moltasov, A.V., Klochkov, I.N., Knysh, V.V. (2013), Engineering method of calculation of tensile and bending stress concentration factor in the lap-welded joint, Journal of Mechanical engineering of the National Technical University of Ukraine «Kyiv Polytechnic Іnstitute», no. 3, pp. 150–157.

Published

2017-06-22

How to Cite

[1]
Moltasov А., P. Tkach, and S. Motrunich, “Engineering method for research of stress state in concentration areas of welded joints with symmetrical reinforcement”, Mech. Adv. Technol., no. 1(79), pp. 82–90, Jun. 2017.

Issue

Section

Original study