NUMERICAL RESIDUAL STRESS-STRAINE STATE LASER WELDING SIMULATION OF SANDWICH PANEL
DOI:
https://doi.org/10.20535/2305-9001.2013.69.29018Keywords:
laser welding, finite element method, the stress-strain state, sandwich panel, moving conical heat source, temperature fieldAbstract
Purpose. The aim of the work is to determine the values of the residual stresses and plastic deformations, assessment of uniformity of residual stress-strain state assembly sandwich welded panels with longitudinal slotted butt seam.
Design/methodology/approach Numerical simulation of the stress-strain state in laser welding of longitudinal slotted butt seam element of sandwich welded panels panel of austenitic stainless steel 08Х18Н10Т based finite element method in the software package «ABAQUS».
Findings Development of finite element model node beznabornoy welded panels based on its solid geometric model, taking into account the parameters of a heating source for laser welding and panel material.
Originality/value. In this paper for thr element of sandwich welded panels evaluated the residual stress-strain state in laser welding of longitudinal slotted butt seam. The developed finite element model verified implementation of the basic assumptions that are used in engineering approximate methods of calculation of the stress-strain state of welded joints ( linearity of the stress state, the hypothesis of plane sections, symmetry relative of the stress-strain state to the average cross-section of the welded joint ).
References
Rykalin N.N. Raschety teplovyh processov pri svarke. Moscow:Mashgiz, 1951.
Rosenthal D. The mathematical theory of welding and cutting. Welding J., 1941. Vol. 20. P. 220 234.
John A. Goldak, Mehdi Akhlaghi. Computational welding mechanics. USA: Springer, 2005. 325.
Sudnik W., Radaj D., Breitschwerdt S., Erofeew W. Numerical simulation of weld pool geometry in laser beam welding. J. Phys. D: Appl.Phys. 2000. Vol. 33. P. 662 – 671.
Vinokurov V. A., Grigor'janc A.G. Teorija svarochnyh deformacij i naprjazhenij [Tekst] Moscow: Mashinostroenie, 1984. 280 p.
Gatovskij, K. M. Karhin V.A. Teorija svarochnyh deformacij i naprjazhenij [Tekst]: ucheb.posobie. Leningr: Leningr. korablestroit. in-t, 1980. 331 p.
Prohorenko V.M. Prohorenko O.V. Napruzhennja ta deformacії u zvarnih z’єdnannjah і konstrukcіjah [Tekst ]: navch. posіb. Kyiv: NTUU «KPІ», 2009. 268 p. Bіblіogr.: p.267. 400 pr.ISBN 978-966-622-331-2.
Liu G. R. The Finite Element Method: A Practical Course / G. R. Liu, S. S. Quek. Butterword Heinemann., 2003. 348 p. Bіblіogr.: pp. 342–343. ISBN 0-7506-5866-5.
Gallager R. Metod konechnyh jelementov. Osnovy [per. c angl.]. Moscow: Mir, 1986. 428 p.
Eugeniusz Rusinski, Jerzy Szmochowsks, Tadeusz Smolnicki. Zaawansowana metoda elementov skonczonych w konstrukcjach nosnych. Poland. Wroclaw: Oficyna Wydawnicza Politechniiki Wroclawskiej, 2000. 444 p. Bіblіogr.: pp. 433–444. ISBN 83-7085-458-3.
Yakhno B.O. Abaqus u zadachah mehanіki. Nac. tehn. un-t Ukraїni «Kiїv. polіtehn. іn-t». Kyiv: NTUU «KPІ», 2011 128p. Bіblіogr.: p.127 ISBN 978-966-622-401-2
Hibbit Abaqus/CAE User’s Manual. USA, Hibbit, Karlsson & Sorensen Inc., 2000. 1306 p.
Hibbit Abaqus Theory Manual. USA, Hibbit, Karlsson & Sorensen Inc., 2000. 841 p. Bіblіogr.: pp. 821–841.
PNAJЕ G 7-002-86 Normy rascheta na prochnost' oborudovanija i truboprovodov atomnyh jenergeticheskih ustanovok. Gosatomenergonadzor SSSR. Мoscow: Energoatomizdat, 1989. 525 p.