SYNTHESIS OF THE STRAIGHT-LINE LINKAGE MECHANISMS USING FIVEFOLD INTERPOLATION NODES

Authors

  • В'ячеслав Олександрович Харжевський Khmelnytskyi National University, Mechanical Engineering Department, Associate Professor, Ukraine https://orcid.org/0000-0003-4816-2781

DOI:

https://doi.org/10.20535/2305-9001.2015.75.46951

Keywords:

linkages, straight-line mechanisms, synthesis, kinematic geometry, Chebyshev’s points, fivefold interpolation nodes

Abstract

Purpose. To develop the method of the synthesis of straight-line linkage mechanisms which are based on four-bar linkage, with the goal to find a fivefold interpolation node in the coupler plane. It enables to design such mechanisms with high accuracy of approximation to straight line by given values of crank, coupler and rocker of basic mechanism. Design/methodology/approach. Method of synthesis of the straight-line linkage mechanisms is based on the theoretical fundamentals of kinematic geometry of the five infinitesimally close positions of the coupler plane. It enables to design path generating linkages which can produce coupler curves with straight lines at the neighbourhood of interpolation node. Findings. It is found that it is possible to obtain high accuracy of approximation to straight line using Chebyshev’s points which are the fivefold interpolation nodes by given values of links, but such points do not exist at every combination of input parameters. Originality/value. The designed method and obtained results can be used in different fields of machinery where path generation is required, so the solved task has an important practical meaning. On the basis of straight-line linkage mechanisms it is also possible to design dwell linkage mechanisms.

Author Biography

В'ячеслав Олександрович Харжевський, Khmelnytskyi National University, Mechanical Engineering Department, Associate Professor

канд. техн. наук (з 2004), доцент кафедри машинознавства (з 2005 на посаді, вчене звання з 2007), директор навчально-сертифікаційного центру SOLIDWORKS факультету інженерної механіки (з 2011).

http://solidworks.com.ua/ru/spivrobitnyky/vykladachi/doc-harzhevskyj-vo.html

 

References

Artobolevskij I. I. Sintez ploskih mehanizmov. I. I. Artobolevskij, N. I Levitskij., S. A. Cherkudinov. Moscow: Fizmatgiz, 1959. 1084 p.

Bejer R. Kinematicheskij sintez mehanizmov. Osnovy teorii metricheskogo sinteza mehanizmov. R. Bejer. Moscow: Mashgiz, 1959. 318 p.

Geronimus Ja. L. Geometricheskij apparat teorii sinteza ploskih mehanizmov. Ja. L. Geronimus. Moscow: Gos. izdatel'stvo fiz.-mat. literatury, 1962. 400 p.

Kinickij Ja.T. Sharnirnye mehanizmy Chebysheva s vystoem vyhodnogo zvena. Ja. T. Kinickij. Kyiv : Vishha shkola, 1990. 232 p.

Kinytskyi Ya.T. Teoriya mekhanizmiv i mashyn v systemi Mathcad: navch. Posibnyk. Ya.T. Kinytskyi, V.O. Kharzhevskyi, M.V. Marchenko. Khmelnytskyi: KhNU, 2014. 295 p.

Osnovy sozdanija i jeffektivnoj jekspluatacii sistem zhizneobespechenija ochistnogo oborudovanija dlja ugol'nyh shaht: monogr. [S.S. Grebjonkin, V.V. Kosarev, S.E. Topchij, N.I. Stadnik, V.I. Zenzerov, V.V. Steblin, B.A. Perepelica, V.N. Popovskij]. Doneck: «VIK», 2009. 372 p.

Pat. 106161 Ukrayina, MPK (2014.01) E21D11/00. Sektsiya kriplennya spoluchennya. Hrin' M.H., Nepomnyashchyy O.L., Sokhatskyi V.O. No a201308301; zayavl. 01.07.2013, opubl. 25.07.2014, Byul. No 14 - 4 p.

Pat. 28722 Respublika Kazahstan KZ A4E02F3/627. Rabochee oborudovanie gidravlicheskogo jekskavatora. Zhursenbaev B.I., Tleukenov S., Gebel' E.S.-RU no 2152486,2000; zajavl.28.08.2013; opubl. 15.07.2014, Bjul. No 7 - 4 p.

Kharzhevskyi V.O. Syntez vazhil'nykh pryamoliniyno-napryamnykh mekhanizmiv ta mekhanizmiv iz zupynkoyu vykhidnoyi lanky na bazi sharnirnoho chotyrylankovoho mekhanizmu: dys. kand. tekhn. nauk: 05.02.02. V.O. Kharzhevskyi; Khmelnitsky derzh. un-t. Khmelnitsky, 2004. 262 p.

Kharzhevskyi V.O. Analitychno-chyslovyy syntez kruhovykh napryamnykh mekhanizmiv na bazi sharnirnoho chotyrylankovoho mekhanizmu z vykorystannyam tochok Burmestera. V.O. Kharzhevskyi, Ya.T. Kinytskyi. Mashynoznavstvo, L'viv: Vyd-vo KINPATRI. 2005. P. 61-65.

Kharzhevskyi V.O. Metodyka vyznachennya osoblyvykh tochok Chebysheva dlya syntezu vazhilnykh pryamoliniyno-napryamnykh mekhanizmiv. V.O. Kharzhevskyi. Visnyk Khmelnytskoho natsionalnoho universytetu. Technical sciences. Khmelnitsky. 2015. Volume 224. Issue 3. pp. 34‐41.

Gassmann V. Synthese von Geradführungen mit ebenen Viergelenkgetrieben, Hamburg, Universität der Bundeswehr Diss., 2000. 102 p.

McCarthy, J., Geometric Design of Linkages, 2nd edition. McCarthy J., Soh G., Springer-Verlag, New York, 2011–448 p.

Sarkissyan Y.L. Approximations in Synthesis of Mechanisms. State Engineering University of Armenia Proceedings, series “Mechanics, Machine Science, Machine-building”, Issue 15, no 2, 2012, pp. 9-21.

Vidosic J., Tesar D. Selection of four-bar mechanisms having required approximate straight-line outputs. Part I. The general case of the Ball-Burmester point. Journal of mechanisms, 2(1), 1967, pp. 23-44.

Yin L. "A General Method for Synthesizing Straight-Line Linkage with Ball and Burmester Points". L. Yin, J. Han, J. Huang, T. Yang. Applied Mechanics and Materials, Vols 215-216, 2012, pp. 138-141.

Wang D. Kinematic Differential Geometry and Saddle Synthesis of Linkages. Wang D.,Wang W. John Wiley & Sons Singapore Pte. Ltd., 2015. – 450 p.

Published

2015-12-06

Issue

Section

Статті