CALCULATION OF TRANSMITTANCES OF SPHERICAL WATER DROPLETS FOR THE TYPICAL SPECTRA OF FIRE THERMAL RADIATION
DOI:
https://doi.org/10.20535/2305-9001.2013.68.36145Keywords:
water curtain, transmittance, fire radiation spectra.Abstract
Purpose. Development of calculated techniques for thermal radiation shielding by a water curtain and performing numerical calculations of a transmittance of water droplet for the main types of spectra of a fire thermal radiation.
Methodology. According to literary data, in most cases the fire radiation spectra can be considered as the sum of two principal components: 1) black body emission spectrum; 2) molecular emission bands of gaseous products of combustion. For mathematical model operation these spectra are presented in the form of the linear combination of these components, in which the relative contribution of molecular emission bands is set by the ψ parameter. The transmittance of a spherical water droplet for such thermal radiation is calculated by means of earlier developed mathematical model.
Findings. Graphic dependences of a transmittance of water droplet from its diameter for the ψ parameter defined values corresponding to different types of fires are received. As a result of calculations it is found that the droplet transmittance decreases at ψ increase.
Application of results. Determination of optimum parameters of water spray curtain for of the thermal radiation attenuation during fire suppression
References
Ravigururajan T.S., Beltan M.R. A Model for Attenuation of Fire Radiation Through Water Droplets. Fire Safety J., 1989, vol. 15, pp. 171–181.
Coppalle A., Nedelka D., Bauer B. Fire protection: water curtains. Fire Safety J., 1993, vol. 20, pp. 241–55.
Yang W., Parker T., Ladouceur H. D., Kee R. J. The interaction of thermal radiation and water mist in fire suppression. Fire Safety Journal, Volume 39, Issue 1, February 2004, pp. 41–66.
Buchlin J.-M. Thermal shielding by water spray curtain, J. Loss Prev. Process Industries, 2005, vol. 18, no. 4-6, pp. 423–432, available at: http://www.iitk.ac.in/che/jpg/papersb/full%20papers/B-%2071.pdf
Collin A., Boulet P., Lacroix D., Jeandel G. On radiative transfer in water spray curtains using the discrete ordinates method. J. Quant. Spectrosc. Radiat. Transfer, 2005, vol. 92, pp. 85–110.
Boulet P., Collin A., Parent G. Heat transfer through a water spray curtain under the effect of a strong radiative source. Fire Safety J., 2006, 41(1), pp. 15–30, available at: http://hal.archives-ouvertes.fr/docs/00/11/37/28/PDF/Boulet2006.pdf
Collin A., Lechene S., Boulet P., Parent G. Water mist and radiation interactions: application to a water curtain used as a radiative shield. Numerical Heat Transfer, Part A: Applications, 2010, vol. 57, pp. 537-553.
Benbrik A., Cherifi M., Meftah S., Khelifi M.S., Sahnoune K. Contribution to Fire Protection of the LNG Storage Tank Using Water Curtain. Int. J. of Thermal & Environmental Engineering, 2011, Volume 2, No. 2, pp. 91-98.
Vinogradov A.G. Pogloshhenie teplovogo izluchenija vodjanymi zavesami (Thermal radiation absorption by water curtains), Pozharovzryvobezopasnost' - Fire and explosion safety, 2012, vol. 21, no. 7, pp. 73-82.
Vinogradov A.G. Pogloshhenie teplovogo izluchenija vodjanymi zavesami. Chast` 2 (Thermal radiation absorption by water curtains. Part 2), Pozharovzryvobezopasnost' - Fire and explosion safety, 2013, vol. 22, no. 4.
Vinogradov A.G. Jekranirovanie teplovogo izluchenija polidispersnymi vodjanymi zavesami (Heat radiation shielding by the polydisperse water curtains), Pozharovzryvobezopasnost' - Fire and explosion safety, 2013, vol. 22.
Vinogradov A.G. Pogloshhenie luchistogo teplovogo potoka v raspylennoj vodjanoj strue (Absorption of the radiant heat flux in the sprayed water jet) Vіsnik Nacіonal'nogo tehnіchnogo unіversitetu Ukraїni «Kiїvs'kij polіtehnіchnij іnstitut», ser. Mashinobuduvannja – Journal of Mechanical Engineering of the National Technical University of Ukraine “Kyiv Polytechnic Institute”, 2012, no. 65, pp. 145-152.
Försth M., Möller K. Absorption of heat radiation in liquid droplets. SP Report 2011:75. Boras SE: Fire Technology, SP Technical Research Institute of Sweden, 57 p., available at: http://wwwv2.sp.se/publ/ViewDocument.aspx?RapportId=13090
Modest M.F. Radiative Heat Transfer. Academic Press, 2003, 822 p.
Buckius R.O., Tien C.L. Infrared Flame Radiation. International Journal of Heat and Mass Transfer, 1977, vol. 20, no.2, pp.93-106.
Hertzberg M., Litton C.D., Donaldson W.F., Burgess D. The infrared radiance and the optical detection of fires and explosions. Symposium (International) on Combustion, 1975, vol. 15, no. 1, pp. 137-144.
Parent G., Acem Z., Lechêne S., Boulet P. Measurement of infrared radiation emitted by the flame of a vegetation fire. International Journal of Thermal Sciences, 2010, vol. 49, pp. 555-562.
Parent G., Acem Z., Collin A., Berfroi R., Boulet P., Pizzo Y., Mindykowski P., Kaiss A., Porterie B. Radiative flux emitted by a burning PMMA slab. Journal of Physics: Conference Series, 2012, vol. 395, p. 012153, available at: http://iopscience.iop.org/1742-6596/395/1/012153/pdf/1742-6596_395_1_012153.pdf
Parent G., Acem Z., Collin A., Boulet P. Radiative properties in the frame of forest fires. Proc. 6th International Symposium on Radiative Transfer, 2010, available at: http://perso.ensem.inplnancy.fr/Anthony.Collin/Conferences/Conference2010A.pdf
Hägglund B., Persson L.E. The heat radiation from petroleum fires. FOA Report, C20126-D6 (A3), Forsvarets Forskningsanstalt, Stockholm, 1976.
Klassen M., Gore J.P. Structure and radiation properties of pool fires. NIST, 1994, NIST-GCR-94-651, 153 р.
Hale G.M., Querry M.P. Optical constants of water in the 200 nm to 200 mm wavelength region. Appl. Optics, 1973, vol. 12, no. 3, pp. 555–563.