VERIFICATION OF FLOW IN THE VORTEX CHAMBER DEVICES

Authors

  • Дмитрий Александрович Сёмин Volodymyr Dahl East-Ukraine National University, Sievierodonetsk, Ukraine
  • Андрей Сергеевич Роговой Kharkov National Automobile and Highway University, Kharkov, Ukraine https://orcid.org/0000-0002-6057-4845
  • Артем Николаевич Левашов Volodymyr Dahl East-Ukraine National University, Sievierodonetsk, Ukraine
  • Ярослав Николаевич Левашов Volodymyr Dahl East-Ukraine National University, Sievierodonetsk, Ukraine

DOI:

https://doi.org/10.20535/2305-9001.2016.77.74796

Keywords:

vortex valve, verification, numerical calculation, turbulence model, vortex chamber supercharger, compressible fluid

Abstract

Purpose. On the basis of the numerical decision of the Reynolds equations verification of mathematical modeling of vortex valves and vortex chamber superchargers in a mode of the closed exit channel when distributions of pressure along radius of these two devices are similar is conducted. Approach. Verification is made by comparison with results of experimental researches on integrated parameters: pressure upon an exit from the device, the flow rate in the supply channel, the flow rate, which is sucked up in the device from environment. Findings. It is as a result received that the most suitable model is the model of an incompressible fluid with rotation-curvature correction on the basis of SST turbulence model. This model provides the least error at vacuum calculation on an axis of a rotating stream is not dependent on device geometry. Also comparison on kinematics parameters on the basis of static pressure comparison on the top end cover of the vortex chamber was made. More exact results are received for the vortex device with radial diffuser.

Author Biographies

Дмитрий Александрович Сёмин, Volodymyr Dahl East-Ukraine National University, Sievierodonetsk

професор кафедри "Гідрогазодинаміка"

Андрей Сергеевич Роговой, Kharkov National Automobile and Highway University, Kharkov

доцент кафедри "Теоретична механіка і гідравліка"

Артем Николаевич Левашов, Volodymyr Dahl East-Ukraine National University, Sievierodonetsk

аспірант кафедри "Гідрогазодинаміка"

Ярослав Николаевич Левашов, Volodymyr Dahl East-Ukraine National University, Sievierodonetsk

аспірант кафедри "Гідрогазодинаміка"

References

Suslov, A.D., Ivanov, S.V., Murashkin, A.V. and Chizhikov, Ju.V. (1985), Vihrevye apparaty [Vortical Apparatus], Mashinostroenie, Moscow, Russia.

Rogovyi, A.S. (2007), "Perfecting of the power characteristics of ink-jet superchargers”, Diss, kand. tekhn. Nauk, Lugansk, Ukraine.

Syomin, D., Pavljuchenko, V., Maltsev, Y., Rogovoy, A. and Dmitrienko, D. (2010), “Vortex mechanical devices in control systems of fluid mediums”, Polish academy of sciences branch in Lublin, TEKA, Commission of motorization and power industry in agriculture, Vol. X, TEKA Kom. Mot. Energ. Roln., OL PAN, no 10, pp. 440-445.

Syomin, D. and Rogovyi, A. (2012), “Features of a working process and characteristics of irrotational centrifugal pumps”, Procedia Engineering, Vol. 39, pp. 231–237, available at: http://dx.doi.org/10.1016/j.proeng.2012.07.029.

Garbaruk, A.V., Strelec, M.H. and Shur, M.L. (2012), Modelirovanie turbulentnosti v raschetah slozhnyh techenij [Turbulence modelling in calculations of difficult flows], Politehn. University, Saint Petersburg, Russia.

Montavon, C.A. (2000), “Mathematical modelling and experimental validation of flow in a cyclone”, 5th International Conference on Cyclone Technologies, Warwick, UK, Vol. 31, pp. 175-186.

Raposo, G.M. and Nieckele, A.O. (2009), Flow Analysis of a Hydrocyclone Designed to High Oil Content Application, ASME 2009 Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers, pp. 2231-2236.

Stephens, D.W. and Mohanarangam, K. (2010), “Turbulence model analysis of flow inside a hydrocyclone”, Progress in Computational Fluid Dynamics, an International Journal, vol. 10, no 5-6, pp. 366-373.

Koli, B.R. (2015), CFD investigation of a switched vortex valve for cooling air flow modulation in aeroengine, Doctoral dissertation, © Bharat Ramesh Koli.

Smirnov, P.E. and Menter, F.R. (2009), “Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term”, Journal of Turbomachinery, vol. 131, no 4, pp. 041010.

Jasak, H. (2009), OpenFOAM: open source CFD in research and industry, International Journal of Naval Architecture and Ocean Engineering, vol. 1, no 2, pp. 89-94.

Yin, J., Jiao, L. and Wang, L. (2010), “Large eddy simulation of unsteady flow in vortex diode”, Nuclear Engineering and Design, vol. 240, no 5, pp. 970-974.

Solodov, V.G. (2016), “Current state of the problem of large-scale turbulence modeling”, Sovremennoe sostojanie problemy modelirovanija krupnomasshtabnoj turbulentnosti, Visnyk NTU«KhPI», Seriya: Hidravlichni mashyny ta hidroahrehaty, NTU “KhPI”, Kharkiv, no. 20 (1192), pp. 108-115.

Menter, F.R. (1994), “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA journal, vol. 32, no 8, pp. 1598-1605.

Syomin, D.O. (1992), “Development and improvement of the characteristics of large-scale vortex valves”, Diss, kand. tekhn. Nauk, Lugansk, Ukraine.

Syomin, D.O. and Rogovyi, A.S. (2005), “Experimental investigations of the characteristics of vortex-fluid pumps”, Jeksperimental'nye issledovanija harakteristik strujno-vihrevogo nasosa, Visnik SumDU, no 12 (84), pp. 64-70.

Syomin, D.O., Rogovyi, A.S. and Levashov, A.M. (2016), “Influence of spin a pumped over stream on power characteristics of vortex chamber pumps”, Visnyk NTU«KhPI», Seriya: Hidravlichni mashyny ta hidroahrehaty, Kharkiv, NTU “KhPI”, no. 20 (1192), pp. 68-71.

Syomin, D. and Rogovyi, A. (2012), “Mathematical simulation of gas bubble moving in central region of the short vortex chamber”, Teka Komisji Motoryzacji i Energetyki Rolnictwa, vol. 12, no 4, pp. 279-284.

Published

2016-11-17

Issue

Section

Original study