DOI: https://doi.org/10.20535/2305-9001.2012.66.39005

ALGORITHMS OF THE DECISION OF PROBLEMS WITH BOUNDARY CONDITIONS, WITH APPLICATION OF THE FINITE ELEMENT METHOD AT THE LARGE ELASTOPLASTIC STRAINS AND TAKING INTO ACCOUNT DAMAGES STRUCTURE. MESSAGE 1. LOGARITHMIC STRAINS

К. М. Рудаков, І. Л. Сидоренко

Abstract


The cycle of messages about algorithms FEM for the decision of problems with boundary conditions taking into account the large strains and damage a material is offered. In the given message some practical questions connected with application of logarithmic deformations are considered: the left and right decomposition of a matrix of gradients of strains of Koshi-Green, definition of mainstreams and values of the strains, interfaced tensors stresses. The algorithm of a finding of own numbers and vectors of a matrix with components of strains tensors of Koshi-Green (algorithm of polar decomposition) is in detail stated. On a numerical example matrixes of the left and right decomposition are illustrated. The scheme of an initial, intermediate and current condition of elementary volume of a material is resulted at the left and right decomposition.

Conclusion. Using the Hencky logarithmic strain in the solution of boundary value problems with large deformations requires additional calculations. These calculations are the main directions of strain by determining the eigenvalues and eigenvectors of a nonsingular symmetric matrix of size 3x3. Such an approach should be used in the construction of high-precision algorithms. When using the logarithmic strain is necessary to use the proper measure of stress - the Noll's stress tensor, which is a tensor of the " Kirchhoff's stress excepted rotation." Most theory of the damage equations is constructed for the main directions of strain. Therefore, the use of logarithmic Hencky strain is easily combined with such theories

Keywords


large strains; logarithmic strains; polar decomposition; stress tensors

References


1. Eterović A.L., Bathe K.J., A hyperelastic-based large strain elasto–plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, International Journal for Numerical Methods in Engineering, 1990, no 30, pp. 1099-1114.

2. Bathe K.J. Finite Element Procedures. New-York: Prentice Hall, 1996, 1037 p.

3. Montáns F.J., Bathe K.J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin, International Journal for Numerical Methods in Engineering, 2005, no 63, pp. 159-196.

4. Weber G., Anand L. Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids, Computer Methods in Applied Mechanics and Engineering, 1990, no. 79, pp. 173-202.

5. Cleja-Tigoiu S., Soo´s E. Elastoplastic models with relaxed configurations and internal state variables, Applied Mechanics Reviews, 1990, no. 43, pp. 131-151.

6. Germen P. Kurs mechaniki sploshnyh sred. [Obshchaya teoriya]: Per. s fr. V.V. Fedulova. Moscow: Vyshaya shkola, 1983, 399 p.

7. Chernych К.F. Nelineynaya teoriya uprugosti v mashinostroitel`nych rashetach. Leningrad: Маshinostroenie, 1986, 336 p.

8. Nоvоgilov V.V. Osnovy nelineynoy teorii uprugosti. Мoscow-Leningrad: ОGIZ, 1948, 211 p.

9. Hoger, A. The stress conjugate to logarithmic strain, International Journal of Solids and Structures, 1987, no. 23, pp. 1645-1656.

10. Sокоl`nikov I.S. Теnzorny аnаliz. [Теоriya i primenenie v gеометrii I v меchanike sploshnych sred]: Per. s аngl. V.S. Коvтоvа; Pod red. V.V. Lochina. Мoscow: Nauka, 1971, 374 p.

11. Моgarovsky М.S. Теоriya prugnosti, plastychnostiі і povzuchosti (Pidruchnyk).Кyiv:Vyshcha shkola, 2002,308p.

12. Коrоbеynikov S.N. Nelineynoe deformirovanie tverdych tel. Novosibirsk: SО RAN, 2000, 261 p.


GOST Style Citations


1.           Eterović A.L., Bathe K.J. A hyperelastic-based large strain elasto–plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. International Journal for Numerical Methods in Engineering, 1990. – 30. – P.1099–1114.

 

2.           Bathe K.J. Finite Element Procedures. – New-York: Prentice Hall, 1996. – 1037 p.

 

3.           Montáns F.J., Bathe K.J. Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin // Int. J. Numer. Meth. Enging, 2005. – 63. – P. 159–196.

 

4.           Weber G., Anand L. Finite deformation constitutive equations and a time integration procedure for isotropic hyperelastic-viscoplastic solids // Computer Methods in Applied Mechanics and Engineering, 1990. – 79. – P. 173–202.

 

5.           Cleja-Tigoiu S., Soo´s E. Elastoplastic models with relaxed configurations and internal state variables // Applied Mechanics Reviews, 1990. – 43. – P. 131-151.

 

6.           Жермен П. Курс механики сплошных сред. Общая теория: Пер. с фр. В.В. Федулова. – М.: Высш. шк., 1983. – 399 с.

 

7.           Черных К.Ф. Нелинейная теория упругости в машиностроительных расчетах. – Л.: Машиностроение, Ленингр. отд-ние, 1986. – 336 с.

 

8.           Новожилов В.В. Основы нелинейной теории упругости. – М.-Л.: ОГИЗ, 1948. – 211 с.

 

9.           Hoger, A. The stress conjugate to logarithmic strain // International Journal of Solids and Structures, 1987. – 23. – P. 1645-1656.

 

10.         Сокольников И.С. Тензорный анализ. Теория и применения в геометрии и в механике сплошных сред: Пер. с англ. В.И. Ковтова; Под ред. В.В. Лохина – М.: Наука, 1971. – 374 с.

 

11.         Можаровський М.С. Теорія пружності, пластичності і повзучості: Підручник. – К.: Вища шк., 2002. – 308 с.

 

12.         Коробейников С.Н. Нелинейное деформирование твердых тел. – Новосибирск: СО РАН, 2000. – 261 с.





Copyright (c) 2020 Journal of Mechanical Engineering NTUU "Kyiv Polytechnic Institute"