INFLUENCE OF SEMICYLINDRICAL CAVITY ON INTEGRAL CHARACTERISTICS OF WALL BOUNDARY LAYER
DOI:
https://doi.org/10.20535/2305-9001.2012.64.53196Keywords:
boundary layer, boundary conditions, cavity, indentation, velocity defects, displacement thickness, momentum thickness, shape factor, coherent vortex structuresAbstract
Process control of mass and heat transfer in liquid and gas flows by means of cavities at the streamlined surfaces is one of the most promising ways to save energy in industrial, transport and power units and machines. The cause of this experimental study setting was deficit of information about coherent vortex structures (CVS) formation and emission from the grooves in the wake flow. To obtain this information in this work we investigate the profiles of the defects of the longitudinal velocity, displacement thickness, momentum thickness and shape factor in the boundary layer of air flow in front, above and behind the surface semi-cylindrical indentation on a flat plate. Analysis of these data shows that they reflect the influence of dissipative and inertial effects on the structure of the flow and allow us to determine the location of the CVS zones in the cavity of the groove and to better understand the conditions and nature of their beginning. Quantitative and qualitative changes of shape factor along the longitudinal coordinate as a function of flow velocity are significantly differ from traditional notions about weak dependence of this characteristic from Reynolds number, that is peculiar to flow over the plates and wing profiles without indentations. The proposed organization and implementation of experiments allow to receive sufficiently effective data by using per single hot-wire sensor of thermoanemometer. Pictures of the formation and evolution of the CVS expend complementary to the boundary conditions database for numerical calculations of heat transfer and aerodynamic drag in the flow with small Mach numbers over surface indentations. Results of investigation may be useful in designing of surfaces for aircrafts, ships and ground transports, as well as efficient compact heat exchangers.References
Khalatov A. A. Teploobmen i gidrodinamika okolo poverhnostnyh uglublenij (lunok) [Heat transfer and fluid mechanics over surface indentations (dimples)]. Kiev, ITTF NAN Ukrainy, 2005. 76 p.
Rowley C. W., Colonius T., Basu A. Journal of Fluid Mech., 2002, no. 455, pp. 315–346.
Babenko V. V., Musienko V.P., Turick V.N., Miljukov D.E. Prikladna gidromehanika, 2010, 12, no. 4, pp. 3–25.
Ermishin A. V. Upravlenie obtekaniem tel s vihrevymi jachejkami v prilozhenii k letatel'nym apparatam integral'noj komponovki. Pod red. A.V. Ermishina, S.A. Isaeva [Control of surface current with vortical cells applied to flying apparatuses of integral configuration]. Moscow, Saint Petersburg, 2001. 360 p.
Gortyshov Ju. F., Popov I.A., Olimpiev V.V., Shchelchkov A.V.,. Kas'kov S.I. Teplogidravlicheskaja jeffektivnost' perspektivnyh sposobov intensifikacii teplootdachi v kanalah teploobmennogo oborudovanija [Heat- and hydraulic efficiency of perspective methods of heat transfer intensity in channels of heat exchangers]. Kazan', Centr innovacionnyh tehnologij, 2009. 531 p.
Kiknadze G. I. Trudy XVI Shkoly- seminara molodyh uchenyh i specialistov pod rukov. akademika RAN A.I.Leont'eva, Sankt-Peterburg, т.2. [Proc. XVI School-seminar of young scientists and specialists under RAS academician leadership A.I. Leont’ev, Saint Petersburg, Vol. 2]. Moscow: Izd-skij dom MEI, 2007, pp.341–345.
Pereira J. C. F., Sousa J.M.M. Journal of Fluids Eng., 1995, no.117, pp. 68–74.
Savel'ev A. D. Izv. RAN. MZhG, 2001, no. 3, pp. 79–89.
Khalatov A. A. VI Minskij Mezhdunar. Forum po Teplomassoobmenu, MMF 2008 [Proc. VI Minsk International Heat and Mass Transfer Forum, MMF 2008]. Minsk, Belarus', 2008, pp. 1–20.
Rockwell D. Annu. Rew. Fluid Mech., 1998, no. 30, pp. 199–229.
Voskobіjnik V. A., Voskobіjnik A.V. Vіsnyk Donec'kogo Unіversitetu, Ser. A: Prirodnichі nauki, 2010, no. 2, pp. 64–70.
Rozumnjuk N. V. Prikladna gіdromehanіka, 2007, 9, no. 4, pp. 49–58.
Lin J.–C., Rockwell D. AIAA Journal, 2001, 39, no. 6, pp. 1139–1151.
Kovalenko G.V., Khalatov A.A. Prikladna gidromehanika, 2008, 10, no. 1, pp. 23–32.
Turick V. M., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Naukovі vіstі NTUU „KPІ”, 2008, no. 4, pp. 46–54.
Turick V. M., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Vіsnyk NTUU „KPІ”, Mashinobuduvannja, 2010, no. 59, pp. 110–117.
Turick V.N., Babenko V.V., Voskobіjnik V.A., Voskobіjnik A.V. Promyslova gіdravlіka і pnevmatyka, 2011, no. 3 (33), pp. 23–27.
Shlihting G. Teorija pogranichnogo sloja [Theory of Boundary Layer]. Moscow, Nauka, 1974. 712 p.
Tarasov A. I., Titov V.B., Gurinov A.A. Vіsnyk Nacіonal'nogo tehnіchnogo unіversitetu «KhPІ», Energetychnі ta teplotehnіchnі procesy j ustatkuvannja, 2008, no. 6, pp. 88–92.
Lojcjanskij L.G. Mehanika zhidkosti i gaza [Mechanics of Fluid and Gas]. Moscow, Nauka, 1987. 840 p.