DOI: https://doi.org/10.20535/2521-1943.2017.81.112561

Control of grinding polygonal surfaces

Yuri Petrakov

Abstract


Grinding of non-round surfaces, in particular polygonal surfaces of dies, is characterized by substantial non stationary. At different sections of the profile, the change in the main characteristic (Material Removal Rate – MRR) process reaches tens of times. To stabilize the grinding process, it is recommended to control the spindle speed of the workpiece CNC grinding machine. Created software that allows to design the control program on the basis of mathematical model of the system. The determination of MRR is realized automatically in the simulation of the grinding process which uses the algorithm developed for solving problems in geometric interaction of the workpiece and the wheel. In forming the control program is possible takes into account the limitations on the maximum circumferential force of cutting, and the maximum allowable acceleration of the machine spindle. Practice has shown that full stabilization is not obtained, even though the performance is increased more than 2 times, while ensuring the quality of the surface. The developed block diagram of the grinding process can serve as a basis for further improvement in the solution of dynamic problems.

Keywords


grinding polygonal surfaces; simulation; grinding CNC machine; stabilization MRR

Full Text:

PDF

References


Petrakov, Y.V., Drachev, O.I. (2014), Avtomaticheskoe upravlenie processami rezania [Automatic control of cutting processes], ТNТ, Stary Oskol, Russian.

Camshaft grinding machines http://www.directindustry.com/industrial-manufacturer/camshaft-grinding-machine-88639.html

Nikitenko, V.M., Kurganova, Yu.A. (2010), Shtampy listovoy shtampovki. Tehnologia izgotovlenia shtampovoi osnastki. [Stamps for sheet punching. The technology of production of die tooling] Ulianovsk, Russian, http://window.edu.ru/resource/788/71788/files/ulstu2010-54.pdf

Mir stankostroenia I tehnologiy. Shlifovanie (2015), [The world machine tool industry and technologies. Grinding], no. 11, Russian, www.metstank.ru/pdf/nr11nov2015.pdf

STUDER SOFTWARE, https://www.studer.com/en/products/software/overview.html

Keferstein, Claus P., Honegger, Daniel, Thurnherr, Hugo and Gschwend, Bernard (2008), “Process monitoring in non-circular grinding with optical sensor”, CIRP Annals - Manufacturing Technology, journal homepage, no. 57 pp 533–536, http://ees.elsevier.com/cirp/default.asp

Petrakov, Y.V. (2014), “Programmirovanie operaciy vreznogo kruglogo Shlifovania na stanke” [Programming operations mortise cylindrical grinding on CNC machines], Journal of Mechanical Engineering NTUU Kyiv Polytechnic Institute”, Vol. 1, no 70, pp. 10-18, DOI: https://doi.org/10.20535/2305-9001.2014.70.33957.

Klocke, F., Modelling and Simulation in Manufacturing Technology „Modeling and Simulation of Grinding processes“ http://www.wzl.rwth-aachen.de/de/f786439a4c53fb78c125709f0055702f/v10_grinding_ii.pdf

Aurich ,J.C., Biermann, A.D. and Blum, E.H. (2009), “Modelling and simulation of process: machine interaction in grinding”, Production Engineering Research and Development, no 3, pp. 111–120, https://link.springer.com/article/10.1007/s11740-008-0137-x

David, A. Stephenson, John S. Agapiou (2016), Metal Cutting Theory and Practice, CRC Press New York.

Kiseviov, I.A., Voronov, S.А., Shieshov, A.А., Ivanov, I.I. (2015), “Imitacionnaia dynamicheskaia model processa shlifovania slognoprofilnyh detalei. Raschet syl shlifovania I modelirjvanie dynamiki obrabotki” [Simulation of the dynamic model of the process of grinding complex parts. Calculation of grinding forces and the modeling of dynamics processing], Nauka I obrazovanie, MGTU im. N.E. Baumana, no. 10. pp. 47–64, http://technomag.edu.ru

Wu, Y.H., Zhang, K., Li, S.H. and Zhang, J.P. (2004), Key Research on High-speed Precision Grinding of Non-circular Parts Based on PMAC Engineering Materials, Vol. 259-260, pp. 370-373, [online], available at: http://www.scientific.net


GOST Style Citations


  1. Петраков Ю.В., Драчев О.И. Автоматическое управление процессами резания. Старый Оскол: ТНТ, 2014. - 408с.
  2. Camshaft grinding machines http://www.directindustry.com/industrial-manufacturer/camshaft-grinding-machine-88639.html
  3. Никитенко В.М., Курганова Ю.А. Штампы листовой штамповки. Технология изготовления штамповой оснастки. Ульяновск, 2010. – 68с. http://window.edu.ru/resource/788/71788/files/ulstu2010-54.pdf
  4. Мир станкостроения и технологий. Шлифование, №11, 2015 // www.metstank.ru/pdf/nr11nov2015.pdf
  5. STUDER SOFTWARE https://www.studer.com/en/products/software/overview.html
  6. Process monitoring in non-circular grinding with optical sensor Claus P. Keferstein, Daniel Honegger , Hugo Thurnherr, Bernard Gschwend CIRP Annals - Manufacturing Technology 57 (2008) pp 533–536 journal homepage: http://ees.elsevier.com/cirp/default.asp
  7. Петраков Ю.В. Программирование операций врезного круглого шлифования на станках с ЧПУ // Вісник НТУУ «КПІ». Серія машинобудування №1 (70) 2014.- с.10-18.
  8. Klocke F. Modelling and Simulation in Manufacturing Technology „Modeling and Simulation of Grinding processes“ http://www.wzl.rwth-aachen.de/de/f786439a4c53fb78c125709f0055702f/v10_grinding_ii.pdf
  9. Aurich J.C., Biermann A.D., Blum E.H. Modelling and simulation of process: machine interaction in grinding // Production Engineering Research and Development (2009) 3: pp. 111–120  https://link.springer.com/article/10.1007/s11740-008-0137-x
  10. David A. Stephenson, John S. Agapiou Metal Cutting Theory and Practice // CRC Press New York, 2016. - 932 p.
  11. Киселёв И.А., Воронов С.А., Ширшов А.А., Иванов И.И. Имитационная динамическая модель процесса шлифования сложнопрофильных деталей. Расчет сил шлифования и моделирование динамики обработки // Наука и образование. МГТУ им. Н.Э. Баумана, Электрон. журн. 2015. № 10. С. 47–64. http://technomag.edu.ru
  12. Y.H. Wu, K. Zhang, S.H. Li and J.P. Zhang Key Research on High-speed Precision Grinding of Non-circular Parts Based on PMAC Engineering Materials Vols. 259-260 (2004) pp 370-373 online at http://www.scientific.net