Strength of nanosatellite POLITAN-2 in action of random loads at stage of transfer to orbit

Alexsandr Tsybenko, Borys Rassamakin, Anton Rybalka

Abstract


Within the framework of existing standards for the creation of new spacecraft, the design and development of both large and ultra-small satellites requires the solution of a wide range of problems associated with analyzing the strength of satellites at different stages of their life cycle. The main and most difficult, from the point of view of ultimate loads, is the stage of putting into orbit. At this stage, the satellite is subject to extreme accelerations, harmonic and random vibrations, shock loads. In this paper we present the strength analysis of the nanosatellite POLYITAN-2 under the action of random vibrations at the stage of launching into orbit. An effective solid-state model and a corresponding finite element model of a nanosatellite have been developed. With the use of the software complex Ansys, a computational study of the stress-strain state of the nanosatellite was carried out. The strength of the structural elements is evaluated. It is established that for the considered version of POLYITAN-2 the strength conditions are fulfilled.

Keywords


stress-strain state; random vibrations; finite element method; nanosatellite; strength; cubesat

References


Tsybenko, A., Rassamakin, B. and Rybalka, A. (2017), Stress-Strain State Investigation of Polyitan-2 Nano-Satellite under the Ascent-Stage Quasi-Static Overload Conditions, Strength of Materials, 49(3), pp.381-387.

ECSS-E-HB-32-26A. Space engineering Spacecraft mechanical loads analysis handbook (2013) [ebook] Noordwijk: Requirements & Standards Division, available at: http://ecss.nl/hbstms/ecss-e-hb-32-26a-spacecraft-mechanical-loads-analysis-handbook.

ECSS-E-ST-10-03C, Testing (2012) [ebook] Noordwijk: Requirements & Standards Division, available at: http://ecss.nl/standard/ecss-e-st-10-03c-testing/.

QB50. System Requirements and Recommendations, (2015), 7th ed. [ebook], available at: https://www.qb50.eu/index.php/tech-docs/category/5-qb50-system-requirements-document.

Bezmozgiy, I., Sofinskiy, A. and Chernyagin, A. (2014), Modelirovanie v zadachah vibroprochnosti konstruktsiy raketno-kosmicheskoy tehniki, Kosmicheskaya tehnika i tehnologii, no 3 (6), pp.71-80.

Tsybenko, A., Rassamakin, B. and Rybalka, A. (2016), “Napryazhenno-deformirovannoe sostoyanie nanosputnika POLYITAN-2 pri kvazistaticheskih peregruzkah na etape vyivedeniya”, Journal of Mechanical Engineering NTUU Kyiv Polytechnic Institute”, no 3 (78), pp. 76-82, DOI: https://doi.org/10.20535/2305-9001.2016.78.70691

Bolotin, V. (1965), Statisticheskie metodyi v stroitelnoy mehanike, Izd-vo lit-ryi po stroitelstvu, Moskva, Russian.

Svetlitskiy, V. (2002), Statisticheskaja mehanika i teoriya nadezhnosti, MGTU im. N.E. Baumana, Moskva, Russian.

Batte, K. and Vilson, E. (1982), Chislennyie metodyi analiza i metod konechnyih elementov, Stroyizdat, Moskva, Russian.

ANSYS Structural Analysis Guide, (2012), [ebook] Available at: http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494/.

Segalman, D., Fulcher, C. and Reese, G. (1998), An Efficient Method for Calculating RMS von Mises Stress in a Random Vibration Environment, [ebook] Available at: https://www.osti.gov/scitech/servlets/purl/573295/; DOI: 10.2172/573295.

Pisarenko, G., Yakovlev, A. and Matveev, V. (1988), Spravochnik po soprotivleniyu materialov, 2nd edn., Naukova dumka, Kiev, Ukraine.


GOST Style Citations


  1. Tsybenko, A., Rassamakin, B. and Rybalka, A. (2017), Stress-Strain State Investigation of Polyitan-2 Nano-Satellite under the Ascent-Stage Quasi-Static Overload Conditions, Strength of Materials, 49(3), pp.381-387.
  2. ECSS-E-HB-32-26A. Space engineering Spacecraft mechanical loads analysis handbook. (2013). [ebook] Noordwijk: Requirements & Standards Division. Available at: http://ecss.nl/hbstms/ecss-e-hb-32-26a-spacecraft-mechanical-loads-analysis-handbook/;
  3. ECSS-E-ST-10-03C. Testing. (2012). [ebook] Noordwijk: Requirements & Standards Division. Available at: http://ecss.nl/standard/ecss-e-st-10-03c-testing/;
  4. QB50. System Requirements and Recommendations. (2015). 7th ed. [ebook] Available at: https://www.qb50.eu/index.php/tech-docs/category/5-qb50-system-requirements-document;
  5.  Безмозгий, И., Софинский, А. and Чернягин, А. (2014). Моделирование в задачах вибропрочности конструкций ракетно-космической техники. Космическая техника и технологии, 3, c.71-80;
  6. Цыбенко, А., Рассамакин, Б. and Рыбалка, А. (2016). Напряженно-деформированное состояние наноспутника POLYITAN-2 при квазистатических перегрузках на этапе выведения. Вісник НТУУ «КПІ». Серiя машинобудування, 86, c.76-82;
  7. Болотин, В. (1965). Статистические методы в строительной механике. Москва: Изд-во лит-ры по строительству;
  8. Светлицкий, В. (2002). Стохастическая механика и теория надежности. Москва: МГТУ им. Н.Э. Баумана;
  9. Батте, К. and Вилсон, Е. (1982). Численные методы анализа и метод конечных элементов. Москва: Стройиздат;
  10. ANSYS Structural Analysis Guide. (2012). [ebook] Available at: http://www.ansys.com (T) 724-746-3304 (F) 724-514-9494/;
  11. Segalman, D., Fulcher, C. and Reese, G. (1998). An Efficient Method for Calculating RMS von Mises Stress in a Random Vibration Environment. [ebook] Available at: https://www.osti.gov/scitech/servlets/purl/573295/;
  12. Писаренко, Г., Яковлев, А. and Матвеев, В. (1988). Справочник по сопротивлению материалов. 2nd ed. Киев: Наукова думка.




DOI: https://doi.org/10.20535/2521-1943.2017.81.114113

Refbacks

  • There are currently no refbacks.