DOI: https://doi.org/10.20535/2521-1943.2018.2.118414

Calculation of hydraulic channels of drives with taking in to account temperature and viscosity changes

A. М. Murashchenko, A. P. Gubarev, O. M. Yakhno, O. V. Tyzhnov

Abstract


The thermal hydraulic investigation of hydraulic channels is presented. Changes of pressure and flow values due to non-steady thermodynamic processes were considered. Main aim of investigation is to ensure hydraulic calculation, that had been made to predict working characteristics of hydraulic drives at design stage, for the variable temperature environment. Structural analyses of the flow circumstances along channels were made with taking in to account temperature gradient and viscosity changes. Numerical simulation had been made to find out period of velocity stabilization and its value. The investigation considers geometry and shape of channels via taking in to account pressure reduction and velocity changes in hydraulic system. Results of investigation allow to increase the precision of hydraulic calculation for drive, that works at variable temperature and none-stable modes, using proposed method.

Keywords


hydraulic drive; fluid; temperature; velocity; viscosity; flow; pressure

References


Jarczyk, M. and Topol, Р. (2012), “Układ hydrauliczny z systemem load sensing w wozie wiertniczym”, Hydraulika i Pneumatyka, no 4, рр. 11-14.

Grzegorz Skorek, “Sprawność energetyczna napędu hydrostatycznego” (2014), Hydraulika i Pneumatyka, no 6, рр. 7-10.

Buriennikov, Yu.A., Nemirovskyi, I.A. and Kozlov, L.H. (2013), Hidravlika, hidro- ta pnevmopryvody: navchalnyi posibnyk, VNTU, Vinnytsia, Ukraina.

Kozlov, L.H. and Lozovskyi, S.M. (2010), “Hidropryvod z proportsiinym rehuliuvanniam shvydkosti paralelno pidkliuchenykh hidrotsylindriv”, Visnyk Khmelnytskoho natsionalnoho universytetu, no 3, pp. 38-43.

Kozlov, L. and Strutinskiy, V. (2014), “Determining dynamic accuracy indicators of multicoordinate working machine in the form of rod structures for fuzzy inertia and dissipation parameters”, Journal of Engineering Studies and Research, no 4, рр. 73 - 80.

Lure, Z.Ya., Nykolenko, Y.V. and Rizhakov, A.N. (2013), “Uravnenye sostoianyia y fyzyko-mekhanycheskye kharakterystyky rabochei zhydkosty pry modelyrovanyy perekhodnikh protsessov v hydropryvode”, Promishlennaia hydravlyka y pnevmatyka, vol. 41, no 3, рр. 49–58.

Banjac, T, Wurzenberger, J.C. and Katrašnik T. (2014), “Assessment of engine thermal management through advanced system engineering modeling”, Advances in Engineering Software, vol. 71, May, pp. 19-33, DOI:10.1016/j.advengsoft.2014.01.016

Hanzha, A.M., Marchenko, N.A., Pidkopai V.M. and Niemtsev, E.M. (2017), “Modeliuvannia protsesiv peredachi teploty vid kotelni do zhytlovoho masyvu na osnovi hidravlichnykh rozrakhunkiv skladnoi teplovoi merezhi”, Hidravlichni mashyny ta hidroahrehaty, vol. 1244, no 22, рр. 83-87.

François Malrai and Al Kassem, Jebai (2017), “Power conversion optimization for hydraulic systems controlled by variable speed drives”, Journal of Process Control, no 59, рр. 67-71.

Kozlov, L.H., Haidamak, O.L. and Petrov, O.V. (2008), “Doslidzhennia kharakterystyk multyrezhymnoho klapana rozpodilnyka dlia hidropryvodiv mobilnykh robochykh mashyn”, Promyslova hidravlyka i pnevmatyka, no 1, рр. 85-88.

Murashchenko, A., Yakhno, О. and Gubarev, А. (2013), “Simplified calculation of lines for hydraulic drive considering the change temperature of fluid”, Motrol – Lublin, vol. 15, no 5, pp. 173-179.

Murashchenko А. (2013), “Effectiveness of the multimode hydrodrive”, Journal of Mechanical Engineering NTUU Kyiv Polytechnic Institute”, vol. 67, рр. 84-89.

Mykheev, M.A. and Mykheeva Y.M, (1977), Osnovu teploperedachy, Эnerhyia, Moscow, Russia.

Эksner Kh., Freitah, R. and dr. (2003), Hydropryvod. Osnovu y komponentu, Uchebnui kurs po hydravlyke, no 1, Moscow, Russia.

Petukhov, B.S., Kurhanov, V.A. and Ankudynov, V.B. (1983), Teploobmen y hydravlycheskoe soprotyvlenye v trubakh pry turbulentnom techenyy zhydkosty okolokrytycheskykh parametrov sostoianyia, vol. 21, no 1, TVT.

Trofymov, V.A., Yakhno, O.M., Hubarev, A.P. and Solonyn, R.Y. (2009), Rabochye zhydkosty system hydropryvoda, NTUU «KPY», Kyiv, Ukraine.


GOST Style Citations


  1. Jarczyk, M. and Topol, Р. Układ hydrauliczny z systemem load sensing w wozie wiertniczym. Hydraulika i Pneumatyka. – 2012. ‑ no 4, рр. 11-14.
  2. Grzegorz Skorek. Sprawność energetyczna napędu hydrostatycznego Hydraulika i Pneumatyka. – 2014. ‑ no 6, рр. 7-10.
  3. Буренніков, Ю.А., Немировський, I.A., Козлов, Л.Г. Гідравліка, гідро - та пневмопривод: навчальний посібник. В: ВНТУ, 2013.
  4. Козлов, Л.Г., Лозовський, С.М. Гідропривод з пропорцій регулюванням швидкості паралельно підключених гідроциліндрів. Вісник Хмельницького національного університету, ‑ 2010. ‑ № 3, ‑ С. 38-43.
  5. Kozlov, L. and Strutinskiy, V. Determining dynamic accuracy indicators of multicoordinate working machine in the form of rod structures for fuzzy inertia and dissipation parameters. Journal of Engineering Studies and Research. – 2014. ‑ no 4. ‑ рр. 73 - 80.
  6. Лур’є, З.Я., Ніколенко, Ю.В., Рижаков, A.Н. Уравнение состояния и физико-маханические характеристики рабочей жидкости при моделировании переходных процесов в гідропривод. Промышленная гидравлика и пневматика. ‑ 2013. – Том 41, № 3. ‑ С. 49–58.
  7. Banjac, T, Wurzenberger, J.C., Katrašnik T. Assessment of engine thermal management through advanced system engineering modeling. Advances in Engineering Software. – 2014. vol. 71, May, pp. 19-33, DOI:10.1016/j.advengsoft.2014.01.016
  8. Ганжа, А.M., Марченко, Н.А., Підкопай В.M. та Німцев, E.M. Моделювання процесів передачі теплоти від котельні до житлового масиву на основі гідравлічних розрахунків складної теплової мережі. Гідравлічні машини та Гідроагрегати. – 2017. Том 1244, № 22. ‑ С. 83-87.
  9. François Malrai, Al Kassem, Jebai. Power conversion optimization for hydraulic systems controlled by variable speed drives. Journal of Process Control. – 2017. ‑ no 59. ‑ рр. 67-71.
  10. Козлов, Л.Г., Гайдамак, O.Л. та Петров, O.В. Дослідження характеристик мультирежимного клапана розподільника для гідроприводів мобільних машин робочих машин”, Промислова гідравліка і пневматика. ‑ 2008. ‑ № 1. ‑ С. 85-88.
  11. Murashchenko, A., Yakhno, О., Gubarev, А. Simplified calculation of lines for hydraulic drive considering the change temperature of fluid. Motrol – Lublin. – 2013. ‑ vol. 15, no 5. ‑ pp. 173-179.
  12. Murashchenko А. Effectiveness of the multimode hydrodrive. Journal of Mechanical Engineering. – 2013. ‑ Vol.67. ‑ рр. 84-89.
  13. Михеев, M.A. и Михеева, Ю.M. Основы теплотехніки. М: Энергия, 1977.
  14. Экснер К., Фрейтаг, Р. и др. Гидропривод. Основы и компоненты. М: Учебный курс по гидравлике. – 2003. ‑ Том. 1.
  15. Петухов, Б.С., Курганов, В.A., Анкудинов, В.Б. Теплообмен и гидравлическое сопротивление в трубах при турбулентном потоке течения жидкости околокритических параметров состояния. TВT. – 1983. – Том 21, № 1.
  16. Трофимов, В.A., Яхно, О.М., Губарев, A.П. и Солонин, Р.Ю. Рабочие жидкости систем гидропривода, НТУУ «KПИ», ‑ 2009.