Analysis of strength of composite cellular scope of scanner of a space apparatus under harmonic vibrations at the stage of introduction to orbit

Authors

  • V. Masley ГКБ «Южное», г. Днепр
  • M. Kryshchuk Igor Sikorsky Kyiv Polytechnic Institute, Kyiv http://orcid.org/0000-0002-0662-9147
  • A. Tsybenko Igor Sikorsky Kyiv Polytechnic Institute, Kyiv

DOI:

https://doi.org/10.20535/2521-1943.2018.82.124310

Keywords:

composite materials, multi-layer carbon-fiber plates, panels, scanner, harmonic vibrations, finite element approximation, numerical calculations, elastic and mass characteristics, stress-strain state, strength

Abstract

The results of numerical determination of dynamic characteristics and stress-deformed condition of the design of the panel platform of the scanner for a spacecraft under harmonic vibrations and quasi-static overloads at the stage of orbital deployment are presented. As a simulation model of the studied system, the topological structure of the composite panel with a known type of cell construction and reinforcing layers of the material in the plane of the package of carbon-plastic plates, tubes, brackets and the arrangement of optical devices is chosen. For solving statics and dynamics problems, the finite element method in mathematical formulation of boundary value problems for modal, harmonic, and quasi-static analysis is employed. Own frequencies and fluctuations forms of the scanner panel platform are determined. For the investigated mode of forced oscillations of the cell panel of the scanner under harmonic vibrations, the resonant amplitudes of displacements, accelerations and amplification coefficients of vibration acceleration amplitudes are established. The maximum magnitudes of Mises equivalent stresses and the minimum strengths of the structural elements of the composite panel by the action of harmonic vibrations and quasi-static overloads corresponding to stage of output are establishedthe investigated mode of forced oscillations of the cell panel of the scanner under harmonic vibrations, the resonant amplitudes of displacements, accelerations and amplification coefficients of vibration acceleration amplitudes are established. The maximum magnitudes of Mises equivalent stresses and the minimum strengths of the structural elements of the composite panel by the action of harmonic vibrations and quasi-static overloads corresponding to stage of output are established.

Author Biography

M. Kryshchuk, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv

кафедра ДММ та ОМ, професор

References

Panin, V.F. (1982), Konstrukcii s sotovym zapolnitelem, Mashinostroenie, Moscow, Russia.

Ivanov, A.A., Kashin, S.M. and Semenov, V.I. (2000), Novoe pokolenie sotovyh zapolnitelej dlya aviacionno-kosmicheskoj tekhniki, Energoatomizdat, Moscow, Russia.

Degtyarev, A.V., Kovalenko, V.A. and Potapov, A.V. (2012), “Primenenie kompozicionnyh materialov pri sozdanii perspektivnyh obrazcov raketnoj tekhniki”, Aviacionno-kosmicheskaya tekhnika i tekhnologiya, no. 2, vol. 89, pp. 34-38.

Maslej, V.N. and Krishchuk, N.G. (2017), “Opredelenie dinamicheskih harakteristik mnogoslojnyh ugleplastikovyh plastin konstrukcii skanera vysokogo razresheniya”, Mechanics and Advanced Technologies, vol. 80, pp. 45-51, DOI: https://doi.org/10.20535/2521-1943.2017.80.109689

Mahutov, N.A. (2005), Konstrukcionnaya prochnost', resurs i tekhnogennaya bezopasnost', Vol.2, Kriterii prochnosti i resursa vol. 1, Obosnovanie resursa i bezopasnosti vol. 2, Nauka, Novosibirsk, Russia.

“ECSS-E-ST-32-10C. Space engineering Structural factors of safety for spaceflight hardware” (2009), available at: http://everyspec.com/ESA/ECSS-E-ST-32-10C_REV-1_47761/

Hejdarifar, M., Tinyakov, D.V. and Ryabkov, V.I. (2014), Analiz predel'noj nesushchej sposobnosti konstrukcij s sotovym zapolnitelem, Otkrytye informacionnye i komp'yuternye integrirovannye tekhnologii, no. 64, pp. 64 – 70.

“GOST R 56514-2015, Normy prochnosti avtomaticheskikh kosmicheskikh apparatov” (2015), available at: http://allgosts.ru/49/140/gost_r_56514-2015.pdf

“ECSS-E-HB-32-26A. Space engineering Spacecraft mechanical loads analysis handbook” (2013), available at: http://www.vibrationdata.com/tutorials2/ECSS-E-HB-32-26A_19February2013.pdf

“ECSS-E-ST-10-03C. Space engineering Testing” (2012), available at: http://everyspec.com/ESA/download.php?spec=ECSS-E-10-02C.047796.pdf

Troshchenko, V.T., Kuriat, R.I., Lebedev, A.A and dr. (2005), Prochnost' materialov i konstrukcij, Akademperiodika, Kiev, Ukraina.

Vvedenskij, N.YU. and Pustobaev, M.V. (2012), “Analiz otrabotki kosmicheskoj tekhniki na mekhanicheskie vozdejstviya v SSHA”, ES i RF, Voprosy ehlektromekhaniki, Trudy VNIIEHM, no. 5, vol. 130, pp. 19-26

Bathe, K.J. and Wilson, E.L. (1976), Numerical methods in finite element analysis, Prentice Hall.

“ANSYS Structural Analysis Guide ANSYS Release 12.1.” (2009) available at : www.ansys.com/

Published

2018-05-01

Issue

Section

Original study