Stabilization of high-current glow discharge by the active (ballast) resistor while the precision welding
DOI:
https://doi.org/10.20535/2521-1943.2018.83.124415Keywords:
glow discharge, stable existence, precision welding, plasma, ballast resistor, diffusion bondingAbstract
Purpose.Thepurposeofthis work is to determine the value of the external active (ballast) resistance switched on the gas-discharge gap that provides stabilization of the burning process of a high-current glow discharge in regimes that are used in precision welding processes: discharge currents 1 ... 30 A, gas pressures of 1.33 ... 13.3 kPa.
Approach.Using the methods of the theory of gas discharge physics, electrodynamics and electromagnetism, the main causes of the appearance of external perturbations and instabilities that lead to the emergence of a stable arc discharge on the local sections of the surfaces of the weldedpartsweredetermined.
Findings.The result of the work is the developed method of analytical determination of the optimal value of the external stabilizing resistance, which ensures a discrepancy between the calculated data and the similar ones obtained during the experiments at the level of 15 ... 20%.
Practically value.The results of the research are of interest for the enterprises of machine-building and instrument-making, power and electrical engineering industries in the manufacture of diffusion-welded assemblies of dissimilar materials in a gas-discharge plasma of a glow discharge of medium pressures
References
- Bolotov, G.P., Bolotov, M.G., Prybytko, I.O. and Kharchenko, G.K. (2016), “Diagnosis of plasma glow discharge energy parameters in the processes of treatment small diameter long tubes”, in II International Young Scientists Forum on Applied Physics and Engineering (YSF), Kharkiv, IEEE, pp.116 – 119.
- Bolotov, G.P., Bolotov, M.G. and Rudenko, M.M. (2016), “Modification of Materials Surface Layers by Low-Energy Ion Irradiation in Glow Discharge”, IEEE 36th International Conference “Electronics and Nanotechnology ELNANO’2016”, April 2016, pp. 135-140.
- Ulyanov, K.N. (1972), “The theory of normal glow discharge medium pressure”, Thermophysics of high temperature. vol. 10, no. 5, Moscow, Russian.
- Ecker, G., Kroll, W. and Zoller, O. (1964), Thennal instability of the plasma column, Phys. Fluids, Vol. 7, No. 212, 200l-2006.
- Bolotov, G.P. and Bolotov, M.G. (2017), “Determination of external stabilizing resistor value in the glow discharge power supply while welding”, IEEE 37th International Conference “Electronics and Nanotechnology ELNANO’2017”, pp. 365-369, April 2017.
- Raizer, Y.P. (1987), Gas Discharge Physics, Science, Moscow, in Russian.
- Bolotov, M.G. (2016), Analysis of the main instabilities of medium pressure glow discharge in the conditions of materials treatment, Journal ChNUT, “Technical sciences and technologies”, vol. 12, no. 2, pp. 103-116.
- Gysin, F.M. and Son, E.E., (1989), Electrophysical processes in discharges of solid and liquid electrodes, Sverdlovsk, Russian.
- Kazantsev, E.I. (1964), Industrial ovens, Metalurgy, Moscow, Russian.
- Kiselev, Y.V. and Cherepanov, V.L. (1967), Spark gaps, Soviet radio, Moscow, Russian.
- Biondi, M.A. (1982), Electron-ion Recombination in Gas Lasers, In: Applied Atomic Collision Physics, Gas Lasers (E. W. McDaniel and W.L. Nighan, ed.), Vol. 3, pp 216-234,
- Eletskii, A.V. (1975), Transport phenomena in weakly ionized plasma, Atomizdat, Moscow, Russian.
- Frommhold, L. (1960), Zeit Phys. Vol. 160, pp. 554-567.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Mechanics and Advanced Technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under CC BY 4.0 that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work