DOI: https://doi.org/10.20535/2521-1943.2018.82.127123

Kinetics of damages accumulation and criterion of the limit state of construction materials

D. Pham, A. Babak, V. Koval

Abstract


In this paper, modern methods for estimating the damage parameter of metal structural materials presented in the form of a scalar quantity are analyzed. A model is developed for describing the kinetics of accumulation of scattered lesions and the criterion of the limiting state for the case of simple stretching, based on the modernized approach proposed by N. Bonora. Based on the energy approaches and approaches that take into account the reduction in the elastic modulus of the first kind for structural materials D16T, VT22, Steel 45, 30HGSA, 12X18H10T, 07H16N6, 15HCND, 18X2N4VA, and AMg2, damage accumulation curves were obtained in the case of simple stretching. The proposed model and the criterion were experimentally verified, the error in the calculated and experimental data was estimated.

Keywords


damage; kinetics of damage accumulation; structural materials; tensile test; criterion of limiting state

References


Lebedev, A.A., Chausov, N.Gh., Boghynych, Y.O. and Nedoseka, S.A. (1996), “Complex assessment of material damage during plastic deformation” [Kompleksnaja ocenka povrezhdaemosty materyala pry plastycheskom deformyrovanyy], Problemy prochnosty, vol. 5, pp. 23–30.

Lemetr Zh. (1985), “Continuous damage model, used to calculate the destruction of plastic materials” [Kontynualjnaja modelj povrezhdenyja, yspoljzuemaja dlja rascheta razrushenyja plastycheskykh materyalov], Teoretycheskye osnovy, vol. 107, pp. 90-97.

Lemaitre, J. (1987), “Damage measurements. Engineering Fracture Mechanics”, France.

Luo, A.C., Yanghy, M. and Ray, H. (1994), “A large anisotropic damage theory based on an incremental complementary energy equivalence model”, vol.70, pp. 19–34.

Chow, C. and Wang, J. (1987), “An anisotropic theory of elasticity for continuum damage mechanics”, International Journal of Fracture, vol. 33, pp. 3–16.

Dzjuba, V.S. (1984), “Thermodynamic approach to the evaluation of damages of reinforced plastics” [Termodynamycheskyj pokhod k ocenke povrezhdaemosty armyrovanykh plastykov], Instytut problem prochnosty, AN URSR. p. 56.

Аbu-farsakh, S. A. and Abed, F. H. (1999), “Macromechanical Damage Model of Fibrous Laminated Composites”, Applied Composite Materials, vol.6, pp. 99–119.

Bobyr, F. H., Ghrabovsjkyj, A. P. and Tymoshenko, O. V. (2004), " A method of determining the kinetics of material destruction in the process of their elastic-plastic deformation " [Sposib vyznachennja kinetyky rujnuvannja materialiv v procesi jikh pruzhno-plastychnogho deformuvannja], vol. 3

Lemaitre, J., Desmorat, R. and Sauzay, M. (2000), "Anisotropic damage law of evolution", Eur. J. Mech. A/Solids, vol.19, pp. 187–208.

Bonora, N., Gentile, D. and Pirondi, A. (2004), "Identification of the Parameters of a Non-Linear Continuum Damage Mechanics Model for ductile Failure in Metals", J. Of Strain Analysis, vol.39 pp. 639–651.

Bonora, N. A. (2017), "Strain capacity assessment of API X65 steel using damage mechanics", Frattura ed Integrita Strutturale, vol. 11, pp. 315-327.

Kachanov, L. M. (1958), "On Creep Rupture Time" Proc. Acad. Sci., USSR vol. 8, pp. 26–31.

Rabotnov, Y. N (1966), "Creep in Structural Elements" – Moscow: Nauka.


GOST Style Citations


  1. Комплексная оценка повреждаемости материала при пластическом деформировании. // Проблемы прочности. / A.A.Лебедев, Н.Г. Чаусов, И.О. Богинич, С.А. Недосека. – 1996. – №5. – С. 23–30.
  2. Леметр Ж. Континуальная модель повреждения, используемая для расчета разрушения пластических материалов. // Теоретические основы. – 1985. – Т.107., №1 – С.90-97
  3. Lemaitre J. Damage measurements. Engineering Fracture Mechanics / J. Lemaitre, J. Dufailly., 1987. – 643 с. – (28).
  4. Luo A.C. A large anisotropic damage theory based on an incremental complementary energy equivalence model / A. C. Luo, M. Yanghy, H. Ray. – 1994. – №70. – С. 19–34.
  5. Chow C. An anisotropic theory of elasticity for continuum damage mechanics / C. Chow, J. Wang. // International Journal of Fracture. – 1987. – №33. – С. 3–16.
  6. Дзюба В.С. Термодинамический поход к оценке повреждаемости армированых пластиков / В. С. Дзюба. // Институт проблем прочности АН УРСР. – 1984. – 56 с.
  7. Аbu-farsakh S.A. Macromechanical Damage Model of Fibrous Laminated Composites / S. A. Аbu-farsakh, F. H. Abed. // Applied Composite Materials. – 1999. – №6. – С. 99–119.
  8. Бобир М.І. Спосіб визначення кінетики руйнування матеріалів в процесі їх пружно-пластичного деформування / М.І. Бобир, А.П. Грабовський, О.В. Тимошенко, 15.03.2004 – (Бюл. №3).
  9. Lemaitre J. Anisotropic damage law of evolution / J. Lemaitre, R. Desmorat, M. Sauzay. // Eur. J. Mech. A/Solids. – 2000. – №19. – С. 187–208.
  10. Bonora N. A. Identification of the Parameters of a Non-Linear Continuum Damage Mechanics Model for ductile Failure in Metals / N. Bonora, D. Gentile, A. Pirondi. // J. Of Strain Analysis. – 2004. – №39. – С. 639–651.
  11. Bonora N.A. Strain capacity assessment of API X65 steel using damage mechanics / N. Bonora, // J Frattura ed Integrita Strutturale. – 2017. – №11. – С. 315–327.
  12. Kachanov L.M. On Creep Rupture Time / L. M. Kachanov. // Proc. Acad. Sci., USSR. – 1958. – №8. – С. 26–31.
  13. Rabotnov Y.N. Creep in Structural Elements / Yu. N. Rabotnov. – Moscow: Nauka, 1966.