Дослідження процесів силової взаємодії акустичного апарату із оброблювальним технологічним середовищем

I. Bernyk

Анотація


Визначена фізична картина процесів взаємодії апарату з оброблювальним технологічним середовищем за умови врахування зміни його реологічних властивостей. Ефективність кавітаційних ефектів від початкового до кінцевого етапу обробки обумовлена контактним тиском та швидкістю його розповсюдження. Врахована низка силових та енергетичних характеристик і параметрів для ефективної реалізації кавітаційного процесу. На базі цих параметрів енергія процесу акумулюється при розширенні бульбашки від початкового врівноваженого до максимального її радіусу. Основу акумуляції складають розтягувальні сили у фазі розрідження акустичної хвилі. Побудовані графіки залежності контактного тиску від ключових параметрів процесу та визначенні закономірності його зміни. Запропоновані режими та параметри протікання енергоефективного акустичного процесу обробки різних середовищ. Визначені напрямки застосування результатів досліджень та їх подальший розвиток.

Ключові слова


акустичний апарат;кавітаційний процес; взаємодія; енергія; середовище; реологічні властивості; параметри; тиск

Повний текст:

PDF (English)

Посилання


Dolinsky, A. and Ivanitskii, G. (2008), Heat and mass transfer and hydrodynamics in the vapor-liquid dispersion media. Thermal basics of discrete input pulse energy, Naukova Dumka, Kiev, Ukraine.

Dong Chen, Sanjay K. Sharma, Ackmez Mudhoo (2011), Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, CRC Press, Florida, USA.

Gumerov, N.A. Ohl, C.-D., Akhatov, I.S., Sametov, S. and Khasimullin, M. (2013), “Waves of acoustically induced transparency in bubbly liquids: theory and experiment”, The Journal of the Acoustical Society of America, vol. 133 no. 5, pp. 3277–3286.

Itkulova, Yu. A., Abramova, O. A., Gumerov, N. A. and Akhatov, I. Sh. (2014), “Modeling bubble dynamics in three-dimensional potential flows on heterogeneous computer systems by the fast method of multipoles and the method of boundary elements”, Computational methods and programming, vol. 15, pp. 239-257.

Du, T. A., Huang, Ch. and Wang, Y. (2016), “Numerical Model for Evolution of Internal Structure of Cloud Cavitation”, ISROMAC-2016, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, April, Hawaii, Honolulu, pp. 10–15.

Jose-Luis Capelo-Martinez (2009), Ultrasound in Chemistry: Analytical Applications, John Wiley & Sons, New York, USA

Feng, H., Barbosa-Cánovas, G.V. and Weiss J. (2011), “Ultrasound Technologies for Food and Bioprocessing,” Food Engineering Series, Springer Science+Business, New York, USA.

Ercan, S.S. and Soysal Ç. (2013) “Use of ultrasound in food preservation”, Natural Science, vol. 5, pp. 5-13, http://dx.doi.org/10.4236/ns.2013.58A2002

Bernyk I. (2017) “Theoretical aspects of the formation and the development of cavitation processes in a technological environment”, MOTROL. Commission of Motorization and Energeticsin Agriculture, vol. 19, no. 3, pp. 3 – 12.

Wood, R. J., Lee, J. and Bussemaker, M.J. (2017), “A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions”, Ultrasonics Sonochemistry, vol. 38, September, pp. 351-370.

Luhovskyi, O., Fesich, V., Zilinskyi, A., and Lavrynenkov A. (2017) “Performance increase of ultrasound liquid sprayers”, Mechanics and Advanced Technologies, vol. 80, no. 2, pp. 113–122, DOI: 10.20535/2521-1943.2017.80.111878

Kleiman, J., Kudryavtsev, Y. and Luhovskyi, O. (2017) “Effectiveness of ultrasonic peening in fatigue improvement of welded elements and structures”, Mechanics and Advanced Technologies, vol. 81, no. 3, pp. 92–98, DOI: http://dx.doi.org/10.20535/2521-1943.2017.81.117489

Khmelev, V.N., Golykh, R.N., Shalunov, A.V., Pedder, V.V., Nesterov, V.A. and Dorovskikh, R.S. (2015), “ Evaluation of optimum modes and conditions of contact ultrasonic treatment of wound surface and creation of tools for its implementation”, American Journal of Engineering Research (AJER), vol. 4, no. 8, pp. 19-30.

Shalunov, A.V., Khmelev, V.N., Golykh, R.N. and Nesterov, V.A. (2017), “Atomization of liquids by ultrasonic”, South-Siberian scientific bulletin, vol. 20, no. 4, pp. 274–281.

Khmelev, V.N., Kuzovnikov, Yu.M. and Khmelev, M.V. (2017), “Ultrasonic devices for scientific researches”, South-Siberian scientific bulletin, vol. 17, no. 1, pp. 5–13.

Gallego-Juarez J.A. (2010), “High-power ultrasonic processing: recent developments and prospective advances”, Physics Procedia, vol. 3, pp. 35–47, https://doi.org/10.1016/j.phpro.2010.01.006

Golykh, R.N., Khmelev, V.N., Khmelev, S.S. and Shalunov, A.V. (2013), “Modes and conditions of efficient ultrasonic influence on high-viscosity media in technological volumes”, 14th International Conference of Young Specialists on Micro|Nanotechnologies and Electron Devices. EDM'2013: Conference Proceedings, Novosibirsk: NSTU, pp. 128–133.

Time, R.W. and Rabenjafimanantsoa, А.Н. (2011), “Cavitation Bubble Regimes in Polymers and Viscous Fluids”, Annual transactions of the Nordic rheology society, vol. 19, 12 p.

Khmelev, V., Leonov, G., Barsukov, R., Gypsy, S., and Shalunov, A. (2007), Ultrasonic Multifunctional and Specialized Equipment for Intensification of technological processes in industry, agriculture and households, Publishing House of the Alt. state. tehn. University, Biisk, Russia.

Brujan, E.A. and Williams, P.R. (2005), “Bubble dynamics and cavitation in non-newtonian liquids”, Reology reviews, The British Society of Rheology, pp. 147-172.

Sirotyuk, M. (2008), Acoustic cavitation, Nauka, Moscow, Russia.

Agranat, B. (1974), Ultrasonic technology, Metallurgy, Moscow, Russia.

Bernyk, I., Luhovskyi, O. and Nazarenko, I. (2016), “Research staff process of interaction and technological environment in developed cavitation”, Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, vol. 76, no. 1, pp. 12–19, DOI: https://doi.org/10.20535/2305-9001.2016.76.39735


Пристатейна бібліографія ГОСТ






DOI: https://doi.org/10.20535/2521-1943.2018.82.127128

Посилання

  • Поки немає зовнішніх посилань.


________________

Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/