Investigation of the processes of the acoustic apparatus with the processing technological environment power interaction

I. Bernyk


The physical picture of the processes of the apparatus with the processing technological environment interaction is determined, the change in its rheological properties were taken into account. The effectiveness of cavitation effects from the initial to the final processing stage is caused by the contact pressure and the speed of its propagation. A lot of power characteristics and parameters were considered for the effective implementation of the cavitation process. On the basis of these parameters, the energy of the process is accumulated by expanding the bubble from the initial balanced to its maximum radius. The basis of accumulation is the tensile forces in the phase of desiccation of the acoustic wave. The graphs of the contact pressure dependence on the key parameters of the process and the determination of the regularity of its change are made. The modes and parameters for leakage of energy-efficient acoustic process of different environments processing were proposed. The directions of of research results application and their further development were determined


acoustic apparat; cavitation process; interaction; energy; environment; rheological properties; parameters; pressure

Full Text:



Dolinsky, A. and Ivanitskii, G. (2008), Heat and mass transfer and hydrodynamics in the vapor-liquid dispersion media. Thermal basics of discrete input pulse energy, Naukova Dumka, Kiev, Ukraine.

Dong Chen, Sanjay K. Sharma, Ackmez Mudhoo (2011), Handbook on Applications of Ultrasound: Sonochemistry for Sustainability, CRC Press, Florida, USA.

Gumerov, N.A. Ohl, C.-D., Akhatov, I.S., Sametov, S. and Khasimullin, M. (2013), “Waves of acoustically induced transparency in bubbly liquids: theory and experiment”, The Journal of the Acoustical Society of America, vol. 133 no. 5, pp. 3277–3286.

Itkulova, Yu. A., Abramova, O. A., Gumerov, N. A. and Akhatov, I. Sh. (2014), “Modeling bubble dynamics in three-dimensional potential flows on heterogeneous computer systems by the fast method of multipoles and the method of boundary elements”, Computational methods and programming, vol. 15, pp. 239-257.

Du, T. A., Huang, Ch. and Wang, Y. (2016), “Numerical Model for Evolution of Internal Structure of Cloud Cavitation”, ISROMAC-2016, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, April, Hawaii, Honolulu, pp. 10–15.

Jose-Luis Capelo-Martinez (2009), Ultrasound in Chemistry: Analytical Applications, John Wiley & Sons, New York, USA

Feng, H., Barbosa-Cánovas, G.V. and Weiss J. (2011), “Ultrasound Technologies for Food and Bioprocessing,” Food Engineering Series, Springer Science+Business, New York, USA.

Ercan, S.S. and Soysal Ç. (2013) “Use of ultrasound in food preservation”, Natural Science, vol. 5, pp. 5-13,

Bernyk I. (2017) “Theoretical aspects of the formation and the development of cavitation processes in a technological environment”, MOTROL. Commission of Motorization and Energeticsin Agriculture, vol. 19, no. 3, pp. 3 – 12.

Wood, R. J., Lee, J. and Bussemaker, M.J. (2017), “A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions”, Ultrasonics Sonochemistry, vol. 38, September, pp. 351-370.

Luhovskyi, O., Fesich, V., Zilinskyi, A., and Lavrynenkov A. (2017) “Performance increase of ultrasound liquid sprayers”, Mechanics and Advanced Technologies, vol. 80, no. 2, pp. 113–122, DOI: 10.20535/2521-1943.2017.80.111878

Kleiman, J., Kudryavtsev, Y. and Luhovskyi, O. (2017) “Effectiveness of ultrasonic peening in fatigue improvement of welded elements and structures”, Mechanics and Advanced Technologies, vol. 81, no. 3, pp. 92–98, DOI:

Khmelev, V.N., Golykh, R.N., Shalunov, A.V., Pedder, V.V., Nesterov, V.A. and Dorovskikh, R.S. (2015), “ Evaluation of optimum modes and conditions of contact ultrasonic treatment of wound surface and creation of tools for its implementation”, American Journal of Engineering Research (AJER), vol. 4, no. 8, pp. 19-30.

Shalunov, A.V., Khmelev, V.N., Golykh, R.N. and Nesterov, V.A. (2017), “Atomization of liquids by ultrasonic”, South-Siberian scientific bulletin, vol. 20, no. 4, pp. 274–281.

Khmelev, V.N., Kuzovnikov, Yu.M. and Khmelev, M.V. (2017), “Ultrasonic devices for scientific researches”, South-Siberian scientific bulletin, vol. 17, no. 1, pp. 5–13.

Gallego-Juarez J.A. (2010), “High-power ultrasonic processing: recent developments and prospective advances”, Physics Procedia, vol. 3, pp. 35–47,

Golykh, R.N., Khmelev, V.N., Khmelev, S.S. and Shalunov, A.V. (2013), “Modes and conditions of efficient ultrasonic influence on high-viscosity media in technological volumes”, 14th International Conference of Young Specialists on Micro|Nanotechnologies and Electron Devices. EDM'2013: Conference Proceedings, Novosibirsk: NSTU, pp. 128–133.

Time, R.W. and Rabenjafimanantsoa, А.Н. (2011), “Cavitation Bubble Regimes in Polymers and Viscous Fluids”, Annual transactions of the Nordic rheology society, vol. 19, 12 p.

Khmelev, V., Leonov, G., Barsukov, R., Gypsy, S., and Shalunov, A. (2007), Ultrasonic Multifunctional and Specialized Equipment for Intensification of technological processes in industry, agriculture and households, Publishing House of the Alt. state. tehn. University, Biisk, Russia.

Brujan, E.A. and Williams, P.R. (2005), “Bubble dynamics and cavitation in non-newtonian liquids”, Reology reviews, The British Society of Rheology, pp. 147-172.

Sirotyuk, M. (2008), Acoustic cavitation, Nauka, Moscow, Russia.

Agranat, B. (1974), Ultrasonic technology, Metallurgy, Moscow, Russia.

Bernyk, I., Luhovskyi, O. and Nazarenko, I. (2016), “Research staff process of interaction and technological environment in developed cavitation”, Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, vol. 76, no. 1, pp. 12–19, DOI:

GOST Style Citations