DOI: https://doi.org/10.20535/2521-1943.2018.84.127194

Yield limit dependence of titanic alloy VТ14 from the stress state parameters

N N. Tormakhov

Abstract


The stress state mode has influence on the yield limit of construction materials that causes the necessity of account of this phenomenon at determination of this material resource. A quantitative characterization of the stress state can be given by means of two parameters which describe, accordingly, by the volume constituent of tensor and stress deviator mode. Influence of the volume constituent of tensor is characterized by the stress triaxiality parameter, and stress deviator mode - by the Lode parameter, Lode corners or normalized third deviatoric stress invariant. In paper is proposed the yield limit dependences as second degree polynomials of the stress state parameters. These dependences are concreted for the titanic alloy VТ14 on the basis of experiments with the loading of tubular specimen by axial force and intrinsic pressure. Supposed, that the stress state in the wall of specimen corresponded to what exists in on his middle surface. At the calculation of the stress intensity not only axial and circuitous but also radial stresses token into account, that resulted in reduction of divergence of yield limits at the different stress state from 12,4 to 10,2 %. The results of calculations showed that the best from the polynomials is equation with contain members: the first degree from both stress state parameters, multiplicity of these parameters and second degree from the stress triaxiality parameter. From the point of view of statistical meaningfulness appeared the best equation that as stress deviator parameter contained the module of the normalized third deviatoric stress invariant. The level of meaningfulness of this equalization on the criterion of Fisher and constants on the criterion of Student exceeded a size 94 %. The application of the proposed regression equation for describing the dependence of the yield strength of a titanium alloy VT14 on parameters of the stress state type makes it possible to make fuller use of the resource capabilities of this material.

Keywords


stress; yield limit; stress state mode; tensor; deviator

References


Malinin, N.N. (1975), Рrikladnaja teorija plastichnosti i polzuchesti [Applied theory of plasticity and creep], Mashinostroenie, Moskow, Russia.

Giginiak, F.F., Lebedev, A.O. and Shkodzinsky, O.K. (2003), Mіcnіst' konstrukcіjnih materіalіv pri malociklovomu navantazhennі za umov skladnogo napruzhennogo stanu [Streng of costruction materialls at small-cyclic loading under complex stress state], Naukova dumka, Kiev, Ukraine.

Kaminsky, A.A. and Bastun, V.N. (1985), Deformacionnoe uprochnenie i razrushenie metallov pri peremennyh processah nagruzhenija [Deformation hardening and fracture of metals under variable loading processes], Naukova dumka, Kiev, Ukraine.

Talypov, G.B. (1968), Plastichnost' i prochnost' stali pri slozhnom nagruzhenii [Plasticity and strength of steel under complex loading], Izdatelstvo Leningradskogo universiteta, Leningrad, Russia.

Lode, W. (1926), “Versuche über den Einfuss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen”, Kupfer und Nickel, Zeitung Phys, vol. 36, pp. 913-939.

Lebedev, A.A., Kovalchuk, B.I., Giginyak, F.F. and Lamashevsky, V.P. (1983), Mehanicheskie svojstva konstrukcionnyh materialov pri slozhnom naprjazhennom sostojanii [Mechanical properties of structural materials under complex stress state: Handbook], in Lebedev, A.A. (ed.), Naukova dumka, Kiev, Ukraine.

Lebedev, A.A. and Lamashevsky, V.P. (2011), Vlijanie vida naprjazhennogo sostojanija na deformirovanie i prochnost' teplostojkih stalej [Influence of the stress state mode on the deformation and strength of heat-resistant steels], Naukovі notatki, 32, pp. 210-218, available at: http://nbuv.gov.ua/UJRN/Nn_2011_32_38.

Kucher, N.K. and Kucher, V.N. (2012), O poverhnostjah nagruzhenija materialov s razlichnoj reakciej pri rastjazhenii i szhatii [On the loading surfaces of materials with different reactions in tension and compression], Journal of Mechanical Engineering NTUU Kyiv Polytechnic Institute”, 65, pp. 38 - 43.

Mozharovskaya, T.N., Mozharovsky, V.N., Giginyak, F.F. and Bulakh, P.A. (2008), “Investigation of the regularities of deformation of structural materials under conditions of creep under prolonged static and cyclic loading, taking into account the influence of the stress state mode”, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”, Serija mashinostroenie, no. 56, pp. 166 – 173.

Tymoshenko, O.V., Koval, V.V. and Kravchuk, R.V. (2011), “Influence of the stress state mode on the critical value of fracture for constructive materials at elastic-plastic deformation”, Vestnik Nacional'nogo tehnicheskogo universiteta “Kievskij politehnicheskij institute”, Serija mashinostroenie, 63, p. 103-107.

Sokolovsky, V.V. (1948), Ob odnoj forme predstavlenija komponent naprjazhenija v teorii plastichnosti [On one form of representation of stress components in the theory of plasticity], Dokl. AN SSSR, LXI, no.2, pp. 86-94.

Novozhilov, V.V. (1951), O svjazi mezhdu naprjazhenijami i deformacijami v nelinejno uprugoj srede [On the relationship between stresses and strains in a nonlinearly elastic medium], Prikladnaja matematika i mehanika, XV, no. 2, pp. 183 - 194.

Bai, Y. and Wierzbicki, T. (2008), “A new model of metal plasticity and fracture with pressure and Lode dependence”, Int. J. of Plasticity, no. 24, pp. 1071–1096.

Shevchenko, Yu.N. and Tormakhov, N.N. (2010), “Constitutive equation of thermoplastycity including the therd invariant”, Int. Appl. Mech, vol. 46, no. 6. – pp. 613 – 624.

Tormakhov, N.N. (2015), O parametrah vida naprjazhennogo sostojanija [On the parameters of the stress state mode], Int. scientific. conf. "Problems of strength, plasticity and stability in the mechanics of a deformable solid", pp. 254-259, available at: http://elibrary.ru/item.asp?id=24832768

Tormakhov, N.N. (2015), “Geometric interpretation of parameters of the stress state mode”, Zbіrn. nauk. prac' Dnіprodzerzhins'kogo derzh. tehn. unіversitetu, Dnіprodzerzhins'k, vol. 26, no. 1, appl. 2, pp. 4-61.

Tormakhov, N.N. (2017), “On the physical meaning of the term "stress state mode”, Matematicheskoe modelirovanie i jeksperimental'naja mehanika deformiruemogo tverdogo tela, pp. 127-131, available at: http://elybrary.ru/item.asp?id=29068499.

Pecherski, R.B., Szeptynski, P. and Nowak, M. (2011), An extension of Burzynski hypothesis of material effort accounting for the third invariant of stress tensor, Archives of Metallurgy and Materials, no. 1, pp. 503-508.

Skrzypek, J. and Ganczarski, A. (2016), Constraints on the applicability range of pressure-sensitive yield/failure criteria: strong orthotropy or transverse isotropy, Acta Mech., 227, pp. 2275–2304.

Radchenko, S.G. (2017), “Effective concepcition of the regression analyze”, “Mechanics and Advanted Technjlogies”, vol. 80, no. 2, pp. 98 – 106, DOI: https://doi.org/10.20535/2521-1943.2017.80.113249


GOST Style Citations


  1. Малинин Н.Н. Прикладная теория пластичности и ползучести. - М.: Машиностроение, 1975. – 400 с.
  2. Гігіняк Ф.Ф., Лебедєв А.О., Шкодзінський О.К. Міцність конструкційних матеріалів при малоцикловому навантаженні за умов складного напруженного стану. - Киев: Наук. думка, 2003. – 270 с.
  3. Каминский А.А., Бастун В.Н. Деформационное упрочнение и разрушение металлов при переменных процессах нагружения.- Киев: Наук. думка, 1985. – 168 с.
  4. Талыпов Г.Б. Пластичность и прочность стали при сложном нагружении. Л.: Изд-во Ленингр. Университета, 1968. – 135 с.
  5. Lode, W. Versuche über den Einfuss der mittleren Hauptspannung auf das Fliessen der Metalle Eisen, Kupfer und Nickel // Zeitung Phys. – 1926. ‑ vol. 36. – Р. 913–939.
  6. Механические свойства конструкционных материалов при сложном напряженном состоянии: Справочник / А.А.Лебедев, Б.И.Ковальчук, Ф.Ф.Гигиняк, В.П.Ламашевский. – Киев: Наук. думка, 1983. – 368 с.
  7. Влияние вида напряженного состояния на деформирование и прочность теплостойких сталей / А. А. Лебедев, В. П. Ламашевский // Наукові нотатки. – 2011. ‑ Вип. 32. – С. 210 ‑ 218. - Режим доступу: http://nbuv.gov.ua/UJRN/Nn_2011_32_38.
  8. Кучер Н.К., Кучер В.Н. О поверхностях нагружения материалов с различной реакцией при растяжении и сжатии // Київ: «Вісник НТУУ«КПІ». Машинобудування». – 2012. ‑ №65. – С. 38 ‑ 43.
  9. Можаровская Т.Н., Можаровский В.Н., Гигиняк Ф.Ф., Булах П.А. Исследование закономерностей деформирования конструкционных материалов в условиях ползучести при длительном статическом и циклическом нагружении с учетом влияния вида напряженного состояния // Вісник нац. техн. ун-ту України «Київський політехнічний інституту. Сер. Машинобудування. ‑ 2008. ‑ №5. – С. 166 – 173.
  10. Тимошенко О.В., Коваль В.В., Кравчук Р.В. Вплив виду напруженого стану на критичне значення пошкоджуваності для конструкційних матеріалів при пружно-пластичному деформуванні // Вісник НТУУ «КПІ». Серія Машинобудування. – 2011. ‑ №6. – С. 103 ‑ 107.
  11. Соколовский В.В. Об одной форме представления компонент напряжения в теории пластичности // Докл. АН СССР, 1948, LXI, №2. – С. 86 ‑ 94.
  12. Новожилов В.В. О связи между напряжениями и деформациями в нелинейно упругой среде // Прикладная математика и механика, 1951, ХV, в. 2. – С. 183 – 194.
  13. Bai Y., Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence // International Journal of Plasticity. – 2008. ‑ №24. – Р. 1071 – 1096.
  14. Shevchenko Yu.N., Tormakhov N.N. Constitutive Equation of Thermoplastycity Including the Therd Invariant // Int. Appl. Mech. – 2010. – 46, №6. – Р. 613 – 624.
  15. Тормахов Н.Н. О параметрах вида напряженного состояния // Межд. научн. конф. «Проблемы прочности, пластичности и устойчивости в механике деформируемого твердого тела» Сборн. тр. конф. Тверь, 09-11 декабря. – 2015. ‑ С. 254-259. режим доступа: http://elibrary.ru/item.asp?id=24832768
  16. Тормахов Н.Н. Геометрическая интерпретация параметров вида напряженного состояния // Збірн. наук. праць Дніпродзержинського держ. техн. університету, Дніпродзержинськ, Україна. – 2015. ‑ Вип. 26, №1. дод. 2. – С. 54 ‑ 61.
  17. Тормахов Н.Н. О физическом смысле понятия «вид напряженного состояния» // Сборник «Математическое моделирование и экспериментальная механика деформируемого твердого тела». – 2017. С. 127 – 131. режим доступа: http://elybrary.ru/item.asp?id=29068499
  18. Pecherski R.B., Szeptynski P., Nowak M. An extension of Burzynski hypothesis of material effort accounting for the third invariant of stress tensor // Archives of Metallurgy and Materials. – 2011. №1. – Р. 503-508.
  19. Skrzypek J., Ganczarski A. Constraints on the applicability range of pressure-sensitive yield/failure criteria: strong orthotropy or transverse isotropy // Acta Mech.. – 2016. №227. – Р. 2275 – 2304.
  20. Radchenko S.G. Эффективная концепция регрессионного анализа // Mechanics and Advansed Technjlogies. – 2017. – Vol. 80, №2. – Р. 98 – 106, DOI: https://doi.org/10.20535/2521-1943.2017.80.113249




________________

Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/