DOI: https://doi.org/10.20535/2521-1943.2018.2.127732

The specific features of high-velocity magnetic fluid sealing complexes

A. Radionov, A. Podoltsev, G. Peczkis

Abstract


The factors, which are insignificant at small velocities, become rather considerable with increasing the shaft surface
velocity as far as the magnetic fluid sealing complex (MFSC) is concerned They impact both on the pressure drop restrained by the sealer and on MFS operational resource. The mutual influence of magnetic and centrifugal forces in the gap of the high-speed
magnetic fluid sealing complex is analyzed. A method for reducing the effect of centrifugal forces on the performance of a complex by placing magnetic flux concentrators on a rotating shaft with the use of multi-physical modeling is studied. It is shown that the
location of the magnetic flux concentrators on the shaft results in the decrease in the magnetic field drop under the last outer tooth by 10%. It is also shown that the location of magnetic flux concentrators on the shaft reduces the value of the vortex velocity in the
end part of the sealer, the directions of the vortex and the magnetic induction vector are opposite each other. The obtained results allowed to expand the field of application of magneto-liquid hermetic complexes at high linear velocities in the gap and were used in
the development of the design of the sealing gas-blowing complex, working on coke oven gas.


Keywords


magnetic fluid sealing complex; centrifugal force; magnetic force; working gap; magnetic fluid; modeling

References


Zibol'd, A.F. (2009), “Jevoljucija laminarnyh techenij, porozhdaemyh v cilindre vrashhajushhimsja magnitnym polem”, Vіsnik Donec'kogo nacіonal'nogo unіversitetu, Ser. A: Prirodnichі nauki, Donetsk, no. 2, pp. 77-89.

Kazakov, Ju.B., Morozov, N.A., Stradomskij, Ju.I. and Perminov, S.M. (2010), Germetizatory na osnove nanodispersnyh magnitnyh zhidkostej i ih modelirovanie, in Kazakov, Ju.B. (ed.), GOUVPO «Ivanovskij gosudarstvennyj jenergeticheskij universitet imeni V.I. Lenina», Ivanovo, Russia.

Shalybkov, D.A. Gidrodinamicheskaja i gidromagnitnaja ustojchivost' techenija Kujetta [Successes of physical sciences] Uspehi fizicheskih nauk, vol. 179, no. 9, pp. 971-994.

Belyj, V.F., Gavrish, V.I. and Kazakuca, A.V. (2000), “Stend konstrukcij MZhG dlja uplotnenija melkodispersnyh sypuchih sred”, 9 - ja Mezhdunarodnaja Plesskaja konferencija po magnitnym zhidkostjam, Sbornik nauchnyh trudov, vol. II, Ivanovo, pp. 401-404.

Radionov, A.V. (2011), Opyt jekspluatacii magnitozhidkostnyh germetizatorov v promyshlennoj jenergetike. Gіrnicha elektromehanіka ta avtomatika, [Mining electromechanics and automatics], Vol. 87, Dnіpropetrovsk, pp. 134-138.

Berkovskij, B.M., Medvedev, V.F. and Krakov, M.S. (1989), Magnitnye zhidkosti, Himija, Moscov, Russia.

Rozencvejg, R. (1989), Ferrogidrodinamika, Mir, Moscov, Russia.

Krakov, M.S. and Nikiforov, I.V. (2011), “Vlijanie meridional'nogo techenija i termomagnitnoj konvekcii na harakteristiki magnitozhidkostnogo uplotnenija”, Zhurnal tehnicheskoj fiziki, vol. 81, no. 12, pp.47-56.

Kondakov, L.A. Golubev, A.I. Ovander, V.B. and dr. (1986), Uplotnenija i uplotnitel'naja tehnika, Spravochnik, Mashinostroenie, Moscov, Russia.

Podol'cev, A.D. and Kucherjavaja, I.N. (2015), Mul'tifizicheskoe modelirovanie v jelektrotehnike. Monografija [Multifimical modeling in electrical engineering], Kiev, Institut jelektrodinamiki NAN Ukrainy.

Radionov, A. Podoltsev, A. Zahorulko, A. (2012), Finite-Element Analysis of Magnetic Field and the Flow of Magnetic Fluid in the Core of Magnetic-Fluid Seal for Rotational Shaft, Procedia Engineering, no. 39. pp. 327-328.

Comsol multiphysics modeling and simulation software. Availavle at: http://www.comsol.com


GOST Style Citations


  1. Зибольд А.Ф. Эволюция ламинарных течений, порождаемых в цилиндре вращающимся магнитным полем [Текст] / А.Ф. Зибольд // Вісник Донецького національного університету. Сер. А: Природничі науки. - 2009. - вип. 2. - С. 77 - 89.
  2. Герметизаторы на основе нанодисперсных магнитных жидкостей и их моделирование [Текст] / Ю.Б. Казаков, Н.А. Морозов, Ю.И. Страдомский, С.М. Перминов. Под общ. ред. Ю.Б. Казакова: ГОУВПО «Ивановский государственный энергетический университет имени В.И. Ленина». - Иваново, 2010. - 184 с.
  3. Шалыбков Д.А. Гидродинамическая и гидромагнитная устойчивость течения Куэтта [Текст] / Д.А. Шалыбков // Успехи физических наук. - Том 179. - №9. - С. 971 – 994.
  4. Белый В.Ф. Испытательный стенд конструкций МЖГ для уплотнения мелкодисперсных сыпучих сред [Текст] / В.Ф. Белый, В.И. Гавриш, А.В. Казакуца // 9 - я Международная Плесская конференция по магнитным  идкостям. Сборник научных трудов, т. II. - Иваново, 2000. - С. 401 - 404.
  5. Радионов А.В. Опыт эксплуатации магнитожидкостных герметизаторов в промышленной энергетике [Текст] / А.В. Радионов // Гірнича електромеханіка та автоматика. - Дніпропетровськ, 2011. - Вип. 87. - С. 134 - 138
  6. Берковский Б.М. Магнитные жидкости [Текст] / Б.М. Берковский, В.Ф. Медведев, М.С. Краков. - М.: Химия, 1989. – 240 с.
  7. Розенцвейг Р. Феррогидродинамика [Текст] / Р. Розенцвейг. - М.: Мир,1989. - 356 с.
  8. Краков М.С. Влияние меридионального течения и термомагнитной конвекции на характеристики магнитожидкостного уплотнения [Текст] / М.С. Краков, И.В. Никифоров // Журнал технической физики. - 2011. - Том 81, вып.12. - С.47 – 56.
  9. Уплотнения и уплотнительная техника: Справочник [Текст] / Л.А. Кондаков, А.И. Голубев, В.Б. Овандер и др.; Под общ. ред. А.И. Голубева, Л.А. Кондакова. - М.: Машиностроение, 1986. - 464 с.
  10. Подольцев А.Д. Мультифизическое моделирование в электротехнике. Монография [текст] / А.Д. Подольцев, И.Н. Кучерявая. – К.: Ин-т электродинамики НАН Украины, 2015. – 305 с.
  11. Radionov A. Finite-Element Analysis of Magnetic Field and the Flow of Magnetic Fluid in the Core of Magnetic-Fluid Seal for Rotational Shaft [text] / A. Radionov, A. Podoltsev, A. Zahorulko // Procedia Engineering. – 2012. – № 39. – P. 327-328.
  12. Comsol multiphysics modeling and simulation software. – http://www.comsol.com