To a procedure of definition of the "equivalent" physico-mechanical characteristics of a honeycomb filler of a composite plate

Authors

  • Konstantin Rudakov Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine https://orcid.org/0000-0003-4191-8945
  • Volodymyr Maslyey ГП "КБ "Южное" им. М.К. Янгеля", г. Днепр, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2018.84.149780

Keywords:

a honeycomb filler, the "equivalent" physicomechanical characteristics, 3D-orthotropy, numerical 3D modelling, FEM, methodical recommendations

Abstract

Purpose. To fulfil methodical recommendations about definition of "equivalent" physicomechanical characteristics of a metal honeycomb filler of type HEXCEL. Methodology. Carried out calculations by a FEM of six models of a honeycomb filler of type HEXCEL on the basis of a foil 5056-6-23, and also applied engineering formulas. Findings. It is shown, that in need of carrying out of calculations of a honeycomb filler of type HEXCEL as a part of a composit plate by a FEM with high accuracy, rationally and it is enough to apply three-dimensional finite elements of type Solid of the first order of approximation. It is revealed, that the majority of "equivalent" physicomechanical characteristics of the specified filler are defined with high accuracy simple formulas. But not all: modules Yung's boy and are defined with the big errors. Considering, that their parity influences a parity between factors Пуассона and , these modules are necessary for defining on the basis of numerical calculations. Originality. Methodical recommendations about definition of all "equivalent" physicomechanical characteristics of a metal honeycomb filler of type HEXCEL, necessary for thermal and thermoelastic calculations are created.

Author Biography

Konstantin Rudakov, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv

каф. ДММіОМ

References

  1. Ivanov, A.A., Kashin, S.M. and Semenov, V.I. (2000), Novoe pokolenie sotovyh zapolnitelej dlja aviacionno-kosmicheskoj tehniki, [New generation of honeycomb fillers for the aerospace engineering], Jenergoatomizdat, Moscow, Russia.
  2. ECSS E HB 32 20. Part 3A. Structural materials handbook – Part 3: Load transfer and design of joints and design of structures. (2011), available at : http://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part3A.pdf
  3. Gajdachuk, A.V., Karpikova, O.A., Kondrat'ev, A.V. and Slivinskij, M.V. (2012), Sotovye zapolniteli i panel'nye konstrukcii kosmicheskogo naznachenija, [Honeycomb fillers and panel constructions of space assigning: monography in 2 vol. Vol. 1. Technological imperfections of honeycomb fillers and constructions], monogr, Vol. 2, no. 1, Tehnologicheskie nesovershenstva sotovyh zapolnitelej i konstrukcij, in Gajdachuka A.V. (ed.), Nac. ajerokosm. un-t im. N.E. Zhukovskogo "Har'k. aviac. in-t", Kharkov, Ukraine.
  4. Aleksandrov, A.Ya., Bryukker, L.E., Kurshin, L.M. and others (1965), "About definition of the resulted elastic parametres of honeycomb fillers", In sb. "Raschety elementov aviatsionnykh konstruktsii". Vyp.4. Mashinostroenie., Moscow, Russia, pp. 59-71.
  5. Birgera, I.A. and Panovko, Ja.G. (ed.) (1968), Prochnost', ustojchivost', kolebanija, sprav. Tom 2, [Strength, stability, oscillations : Handbook], vol. 2, Mashinostroenie, Moscow, Russia.
  6. Kobelev, V.N., Kovarskij, L.M. and Timofeev, S.I. (1984), Raschet trehslojnyh konstrukcіj, [Calculation of three-layer constructions: Handbook], Spravochnik, Mashinostroenie, Moscow, Russia.
  7. Endogur, A.I., Vajnberg, M.V. and Ierusalimskij, K.M. (1986), Sotovye konstrukcii. Vybor parametrov i proektirovanie [Honeycomb constructions. Selection of parametres and projection], Mashinostroenie, Moscow, Russia.
  8. Panin, V.F. and Gladkov, Ju.A. (1991), Konstrukcii s zapolnitelem, [Constructions with a filler], Spravochnik, Mashinostroenie,Moscow,Russia.
  9. Gajdachuk, V.E., Kondrat'ev, A.V., Kirichenko, V.V. and Slivinskij, V.I. (2011), Optimal'noe proektirovanie kompozitnyh sotovyh konstrukcij aviakosmicheskoj tehniki, monograf, Nac. ajerokosm. un-t "Har'k. aviac. in-t",Kharkov,Ukraine.
  10. ANSYS Structural Analysis Guide ANSYS Release 12.1. (2009), available at: www.ansys.com
  11. Rudakov, K.N. (2011), FEMAP 10.2.0. Geometricheskoe i konechno-jelementnoe modelirovanie konstrukcij, Kyiv, Ukraine, available at: http://www.cad.dp.ua/stats/FEMAP-102.php
  12. Maslej, V.N., Krishhuk, N.G. and Cybenko, A.S. (2018), "The analysis of performances of simple harmonic motions composite honeycomb-panel the space vehicle scanner", Problemy prochnosti, no. 4. pp. 168-178.
  13. Lehnickij, S.G. (1977), Teorija uprugosti anizotropnogo tela, [Theory of elasticity of an anisotropic body], 2nd ed., Glavnaja redakcija fiz-mat. lit-ry izd-va "Nauka",Moscow,Russia.

Published

2018-12-26

How to Cite

[1]
K. Rudakov and V. Maslyey, “To a procedure of definition of the "equivalent" physico-mechanical characteristics of a honeycomb filler of a composite plate”, Mech. Adv. Technol., vol. 84, no. 3(84), pp. 75–85, Dec. 2018.

Issue

Section

Original study