DOI: https://doi.org/10.20535/2521-1943.2019.85.156494

The analysis of the thermodimensional stability of the composite honeycomb panel for the conditions of thermal loading of space apparatus

M. Kryshchuk, V. Maslyey, A. Mashtabe

Abstract


The results of the numerical determination of the stress-strain state of the composite honeycomb panel under thermal loads of varying intensity in a near-earth orbit are presented. As a simulation model of the structure under study, a typical structure of a composite cell panel with a known type of cell arrangement of honeycomb aluminum filler and reinforcement schemes for layers of carbon fiber material for upper and lower plates with known thermomechanical properties was chosen. To solve the problems of thermoelasticity, we used the finite element method in mathematical formulations for quasistatic thermomechanical analysis. The distribution of the values of von Mises equivalent stresses in the structural elements of the honeycomb panel under thermal loads in the temperature range from -80 to +80 is determined. The longitudinal and transverse deflections of the honeycomb from the action of thermal loads of various intensities in the near-earth orbit are found. The limiting value of the temperature difference between the outer surfaces of the plates, which ensures the thermal stability of the composite honeycomb panel, has been established.

Keywords


composite materials; multilayer carbon fiber plates; honeycomb; thermomechanical characteristics; thermal stability; finite element approximations; mathematical model; numerical calculations; stress-strain state

References


Panin, V.F. (1982), Konstrukcii s sotovym zapolnitelem, Mashinostroenie, Moscow, Russia.

Ivanov, A.A., Kashin, S.M. and Semenov, V.I. (2000), Novoe pokolenie sotovyh zapolnitelej dlya aviacionno-kosmicheskoj tekhniki [New generation of cellular aggregates for aerospace technology], Energoatomizdat, Moscow, Russia.

Degtyarev, A.V., Kovalenko, V.A. and Potapov, A.V. (2012), “The use of composite materials in the creation of promising samples of rocket technology”, Aviacionno-kosmicheskaya tekhnika i tekhnologiya, vol. 89, no. 2, pp. 34-38.

Molodcov, G.A., Bitkin, V.E., Simonov, V.F. and Urmansov, F.F. (2000), Formostabil'nye i intellektual'nye konstrukcii iz kompozicionnyh materialov [Form-stable and intelligent structures made of composite materials], Mashinostroenie, Moscow, Russia.

Maslej, V.N. and Kulik, A.S. (2017), “Methods of designing products made of polymer composite materials”, Space Science and Technology, vol. 23, no. 5 (108), pp. 44-48.

Maslej, V.N., and Krishchuk, N.G. (2017), “Determination of the dynamic characteristics of multilayer carbon fiber plates of high-resolution scanner design”, Mechanics and Advanced Technologies, vol. 80, no. 2, pp. 45-51, https://doi.org/10.20535/2521-1943.2017.80.109689

Maslyey, V., Kulyk, A. and Sanin, A. and dr. (2017), Development of dimentionally stable structure of drawtube of optical device made of composite material, European Commission funded International Workshop “Materials resistant to extreme conditions for future energy systems”, Kyiv, Ukraine, 12-14 June, Book of abstracts, p. 72.

Maslei, V. N., Krishchuk, N.G. and Tsybenko, A.S. (2018), “Analysis of harmonic vibration characteristics for a composite honeycomb panel of the spacecraft scanner”, Strength of Materials, vol. 50, no. 4, pp 655–664.

Maslej, V.N. and Kulik, A.S. (2017), “Analysis of the thermally stable supporting structure of the spacecraft payload device”, Aviacionno-kosmicheskaya tekhnika i tekhnologiya, Har'kov, vol. 140, no. 5, pp. 31-35.

Bitkina, E.V., Denisov, A.V. and Bitkin, V.E. (2012), “Constructive-technological methods of creating dimensionally stable space composite structures of integral type”, Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk, vol.14. no.4(2). pp. 555-560.

Koshkina, V.K. (1975), Osnovy teploperedachi v aviacionnoj i raketno-kosmicheskoj tekhnike [Fundamentals of heat transfer in aviation and rocket-space technology], in Koshkina, V.K. (ed.), Mashinostroenie, Moscow, Russia.

Gilmor D.G. (2002), Spacecraft thermal control handbook, 2nd ed., Fundamental Technologies, EI Segundo, Aerospace Press, vol. 1. California.

Lukas, Dzh. (1974), Teploobmen i teplovoj rezhim kosmicheskih apparatov [Heat transfer and thermal regime of spacecraft], in. Anfimova, N.A. (ed.), Mir, Moscow, Russia.

Zaletaev, V.M. and Kapinos, Yu.V. (1971), Raschet teploobmena kosmicheskogo apparata [Calculation of heat transfer spacecraft], Mashinostroenie, Moscow, Russia.

Horoshun, L.P. and Maslov, B.P. (1980), Metody avtomatizirovannogo rascheta fiziko-mekhanicheskih postoyannyh kompozicionnyh materialov, Naukova Dumka, Kyiv, Ukraine.

Rudakov, К.N. and Masley, V.N. (2018), “To a procedure of definition of the "equivalent" physico-mechanical characteristics of a honeycomb filler of a composite plate”, Mechanics and Advanced Technologies, no. 84, no. 3, pp. 75-85, https://doi.org/10.20535/2521-1943.2018.84.149780

Frolov, G.A., Borovik, D.V. and Kolotilo, A.D. and dr. (2013), “Study of the installation for determining thermal and thermal diffusivity in simulating several factors of outer space”, Vestnik dvigatelestroeniya, no.2, pp. 9-15.

Babenko, A.E., Bobyr, M.І., Bojko, S.L. and Boronko, O.O. (2009) Teorіya pruzhnostі, Chastyna 1 [The theory of elasticity. Part 1], Osnova, Kyiv, Ukraine.

Bathe, K.J. and Wilson, E.L. (1976), Numerical methods in finite element analysis, Prentice Hall.

“ANSYS Structural Analysis Guide ANSYS Release 12.1”, (2009) available at: www.ansys.com/


GOST Style Citations


  1. Панин В.Ф. Конструкции с сотовым заполнителем / В.Ф. Панин. – М.: Машиностроение, 1982. – 152 с.
  2. Иванов А.А. Новое поколение сотовых заполнителей для авиационно-космической техники / А.А. Иванов, С.М. Кашин, В.И. Семенов. – М.: Энергоатомиздат, 2000. – 436 с.
  3. Дегтярев А.В. Применение композиционных материалов при создании перспективных образцов ракетной техники / А.В. Дегтярев, В.А. Коваленко, А.В. Потапов // Авиационно-космическая техника и технология. – 2012. – № 2(89). – C. 34 – 38.
  4. Формостабильные и интеллектуальные конструкции из композиционных материалов / Г.А. Молодцов, В.Е. Биткин, В.Ф. Симонов, Ф.Ф. Урмансов. – М. : Машиностроение, 2000. – 352 с.
  5. Маслей В.Н. Методы проектирования изделий из полимерных композиционных материалов / В.Н. Маслей, А.С. Кулик // Космічна наука і технологія. ‑ 2017. – Том. 23. – №5(108). – C. 44-48.
  6. Маслей В.Н. Определение динамических характеристик многослойных углепластиковых пластин конструкции сканера высокого разрешения / В.Н. Маслей, Н.Г. Крищук // Mechanics and Advanced Technologies. ‑ 2017. ‑ Том 80, №2. ‑ C. 45-51. https://doi.org/10.20535/2521-1943.2017.80.109689
  7. Masley V. Development of dimentionally stable structure of drawtube of optical device made of composite material /V. Masley, А. Kulyk, A. Sanin, S. Moskal’ov, V. Kavun, A. Schudro // European Commission funded International Workshop "Materials resistant to extreme conditions for future energy systems", 12-14 June. Kyiv – Ukraine. Book of abstracts. 2017. ‑ 72 p.
  8. Maslei V. N., Krishchuk N.G., Tsybenko A.S. Analysis of harmonic vibration characteristics for a composite honeycomb panel of the spacecraft scanner. Strength of Materials July 2018, Vol. 50, no. 4, pp 655–664.
  9. Маслей В.Н. Анализ терморазмеростабильной несущей конструкции прибора полезной нагрузки космического аппарата / В.Н. Маслей, А.С. Кулик // Авиационно-космическая техника и технология, Харьков, ‑ 2017. – 5/140. – с. 31-35.
  10. Биткина Е.В., Денисов А.В., Биткин В.Е. Конструктивно-технологические методы создания размеростабильных космических композитных конструкций интегрального типа // Известия Самарского научного центра Российской академии наук. ‑ 2012. Том.14. №4(2). С. 555-560.
  11. Основы теплопередачи в авиационной и ракетно-космической технике / Под ред. В.К.Кошкина. М.: Машиностроение, 1975. ‑ 624 с.
  12. Spacecraft thermal control handbook. Ed. D.G.Gilmor. Vol. 1. Fundamental Technologies. EI Segundo, California: Aerospace Press, 2002, ‑ 836 p.
  13. Лукас Дж. Теплообмен и тепловой режим космических аппаратов / под ред. Н.А. Анфимова. М.: Мир, 1974. 544 с.
  14. Залетаев В.М., Капинос Ю.В. Расчет теплообмена космического аппарата. М: Машиостроение, 1971, 207с. 
  15. Хорошун Л.П., Маслов Б.П. Методы автоматизированного расчета физико-механических постоянных композиционных материалов. – К: Наукова думка, 1980. ‑143с.
  16. Рудаков К.Н. К методике определения "эквивалентных" физико-механических характеристик сотового заполнителя композиционной плиты / К.Н. Рудаков, В.Н. Маслей // Mechanics and Advanced Technologies, 2018, Том 84, №3, ‑ c. 75-85. https://doi.org/10.20535/2521-1943.2018.84.149780
  17. Фролов Г.А., Боровик Д.В., Колотило А.Д. и другие. Исследование установки для определения тепло- и температуропроводности при моделировании некоторых факторов космического пространства. Вестник двигателестроения. ‑ №2, С. 9-15. 
  18. Бабенко А.Є. Теорія пружності. Частина 1. Підручник /А. Є. Бабенко, М.І. Бобир, С.Л. Бойко, О.О. Боронко – Київ: Основа, 2009. – 244 с. 
  19. Bathe K.J. Numerical methods in finite element analysis / K.J. Bathe, E.L.Wilson // Prentice Hall. – 1976 
  20. “ANSYS Structural Analysis Guide ANSYS Release 12.1.” (2009) available at : www.ansys.com/




________________

Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/