DOI: https://doi.org/10.20535/2521-1943.2019.85.159650

Theoretical Foundations of the Method of Superimposed Meshes

V. Martynenko

Abstract


The problem of correct modeling of anisotropic properties of composite materials is not fully covered at the moment. This forces engineers and scientists to significantly simplify a description of physical and mechanical parameters when determining a mechanical behavior of solid deformable bodies, especially in case of the viscoelasticity phenomenon. As a result, commercial finite-element codes model these properties using hereditary functions that are proportional to the initial elasticity tensor, which in some cases is not a valid assumption. The proposed method of superimposed meshes eliminates such disadvantages. It allows to model physical and mechanical properties, in particular viscoelastic ones, taking into account any degree of their anisotropy. This method made it possible to solve a number of problems of the anisotropic viscoelasticity theory, which gave correct results. A theoretical substantiation of this method considers the total energy functional of a deformed body for linear static and dynamic problems of elasticity and viscoelasticity theories. Such an approach to a problem consideration established the rules for obtaining the parameters of the stress-strain state of deformable bodies in accordance with the features of the method of superimposed meshes and identified possible scenarios for its application

Keywords


finite-element method; viscoelasticity; composite material; Lagrangian functional

References


Karpinos, D.M. (ed.) (1985), Kompozitsionnye materialy. Spravochnik [Composite Materials. Handbook], Naukova dumka, Kiev, Ukraine.

Lubin, G. (ed.) (1982), Handbook of composites, Springer, the USA.

Peters, S.T. (ed.) (1998), Handbook of composites, 2nd ed., Champan & Hall, Cambridge University Press, Cambridge, UK.

Reddy, J.N. (2003), Mechanics of laminated composite plates and shells: theory and analysis, 2nd ed., CRC Press.

Shu, L.S. and Onat, E.T. (1967), “On anisotropic linear viscoelastic solids”, Proc. Fourth Symp. Nav. Struct. Mech., pp. 203-215.

Taylor, Z.A., Comas, O., Cheng, M., Passenger, J., Hawkes, D.J. and Atkinson, D. (2009), “On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution”, Med. Image Anal., vol. 13, pp. 234-244, doi:10.1016/j.media.2008.10.001

Nedjar, B. (2007), “An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects”, Comput. Methods Appl. Mech. Eng., vol. 196, pp. 1745-1756, DOI: 10.1016/j.cma.2006.09.009

Lubarda, V. and Asaro, R. (2014), “Viscoelastic response of anisotropic biological membranes. Part II: Constitutive models”, Theor. Appl. Mech., vol. 41, pp. 213-231, DOI: 10.2298/TAM1403213L

Santos, J.E., Carcione, J.M. and Picotti, S. (2011), “Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments”, Comput. Methods Appl. Mech. Eng., vol. 200, pp. 896-904, https://doi.org/10.1016/j.cma.2010.11.008

Bretin, E. and Wahab, A. (2011), “Some anisotropic viscoelastic Green functions”, Contemp. Math., vol. 548, pp. 129-148.

Hwu, C. and Chen, Y.C. (2011), “Analysis of defects in viscoelastic solids by a transformed boundary element method”, Procedia Eng., vol. 10, pp. 3038-3043.

Bai, T. and Tsvankin, I. (2016), “Time-domain finite-difference modeling for attenuative anisotropic media”, Geophysics, vol. 81, pp. 163-176.

Martynenko, V.G. (2017), “An original technique for modeling of anisotropic viscoelasticity of orthotropic materials in finite element codes applied to the mechanics of plates and shells”, Mechanics and Mechanical Engineering, vol. 21, no. 2, pp. 389-413.

Martynenko, V.G. and Lvov, G.I. (2018), “Method for modeling anisotropic viscoelastic properties of composite elements of machines”, tezy dopovidej u 3-kh chastynakh [theses of reports in 3 parts], XII Mizhnarodna naukovo-praktychna konferencija maghistrantiv ta aspirantiv Nacionaljnogho tekhnichnogho universytetu «Kharkivsjkyj politekhnichnyj instytut» [XII International Scientific and Practical Conference of Graduates and Postgraduates of the National Technical University "Kharkiv Polytechnic Institute"], Kharkiv, Ukraine, 17-20 April 2018, pp. 188-189.

Martynenko, V.G. (2018), “Application of the method of superimposed meshes to the solution of anisotropic viscoelasticity problems”, tezy dopovidej V mizhnarodnoji naukovo-praktychnoji konferenciji [theses of reports of the V International Scientific and Practical Conference], Aktualjni problemy inzhenernoji mekhaniky [Actual problems of engineering mechanics], Odesa, Ukraine, 22-25 May 2018, pp. 156-158.

Martynenko, V.G. (2018), Rozrobka metodiv rozrakhunku elementiv konstrukcij iz v'jazkopruzhnykh kompozycijnykh materialiv [Development of methods for calculation of constructional elements of viscoelastic composite materials], National Technical University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine.

Ferry, J.D. (1980), Viscoelastic properties of polymers, 3rd ed., John Wiley & Sons, the USA.

Christensen, R.M. (2006), Theory of viscoelasticity. An introduction, 2nd ed., Academic Press, New York, the USA.

Roylance, D. (2001), Engineering Viscoelasticity, Massachusetts Institute of Technology, Cambridge, the USA.

Imaoka, S. (2008), “Analyzing viscoelastic materials”, ANSYS Advantage, vol. 2, no. 4, pp. 46-47.

ANSYS® Academic Research Mechanical, Release 17.2, Help System, Structural Analysis Guide, ANSYS Inc.

ANSYS® Academic, ANSYS Inc, viewed 23 May 2018, <https://www.ansys.com/academic>.

ANSYS® Free Student Product Downloads, ANSYS Inc, viewed 23 May 2018, <https://www.ansys.com/academic/free-student-products>.

ANSYS® Academic Terms and Conditions, ANSYS Inc, viewed 23 May 2018, <https://www.ansys.com/en-in/academic/terms-and-conditions>.

Sabonnadiere, J.-K. and Coulomb, J.-L. (1987), Finite-element method in CAD, Springer-Verlag, New York, the USA.


GOST Style Citations


  1. Карпинос Д.М. Композиционные материалы. Справочник. / Д.М. Карпинос. – К.: Наукова думка, 1985. – 588 с.
  2. Lubin G. Handbook of Composites / G. Lubin. – Springer US, 1982. – 778 p.
  3. Peters S.T. Handbook of composites / S.T. Peters. – Cambridge: Champan & Hall, 1998. – 1118 p.
  4. Reddy J.N. Mechanics of laminated composite plates and shells: theory and analysis / J.N. Reddy. – CRC Press, 2004. – 831 p.
  5. Shu L.S. On anisotropic linear viscoelastic solids / L.S. Shu, E.T. Onat // Proc. Fourth Symp. Nav. Struct. Mech. –1967. – P. 203-215.
  6. Taylor Z.A. On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution / Z.A. Taylor, O. Comas, M. Cheng et. al. // Med. Image Anal. – Vol. 13. – 2009. – P. 234-244, doi:10.1016/j.media.2008.10.001
  7. Nedjar B. An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects / B. Nedjar // Comput. Methods Appl. Mech. Eng. – Vol. 196. – 2007. – P. 1745-1756. DOI: 10.1016/j.cma.2006.09.009
  8. Lubarda V. Viscoelastic response of anisotropic biological membranes. Part II: Constitutive models / V. Lubarda, R. Asaro // Theor. Appl. Mech. – Vol. 41. – 2014. – P. 213-231. DOI: 10.2298/TAM1403213L
  9. Santos J.E. Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments / J.E. Santos, J.M. Carcione, S. Picotti // Comput. Methods Appl. Mech. Eng. – Vol. 200. – 2011. – p. 896–904, https://doi.org/10.1016/j.cma.2010.11.008
  10. Bretin E. Some anisotropic viscoelastic Green functions / E. Bretin, A. Wahab // Contemp. Math. – Vol. 548. – 2011. – P. 129–148.
  11. Hwu C. Analysis of defects in viscoelastic solids by a transformed boundary element method / C. Hwu, Y.C. Chen // Procedia Eng. – Vol. 10 – 2011. – P. 3038–3043.
  12. Bai T. Time-domain finite-difference modeling for attenuative anisotropic media / T. Bai, I. Tsvankin // Geophysics. – Vol. 81. – 2016. – P. 163-176.
  13. Martynenko V.G. An original technique for modeling of anisotropic viscoelasticity of orthotropic materials in finite element codes applied to the mechanics of plates and shells / V.G. Martynenko // Mechanics and Mechanical Engineering. – Vol. 21, No. 2. – P. 389-413.
  14. Мартиненко В.Г. Метод моделювання анізотропних в’язкопружних властивостей композиційних елементів машин / В.Г. Мартиненко, Г.І. Львов // XII Міжнародна науково-практична конференція магістрантів та аспірантів Національного технічного університету «Харківський політехнічний інститут»: тези доповідей у 3-х частинах, м. Харків, 17-20 квітня 2018 р. – Ч. 3 – Харків: НТУ «ХПІ», 2018. – С. 188-189.
  15. Мартиненко В.Г. Застосування методу накладених сіток до розв’язання задач анізотропної в’язкопружності / В.Г. Мартиненко // Актуальні проблеми інженерної механіки: тези доповідей V міжнародної науково-практичної конференції, м. Одеса, 22-25 травня 2018 р. – Одеса: ОДАБА, 2018. – С. 156-158.
  16. Мартиненко В.Г. Розробка методів розрахунку елементів конструкцій із в’язкопружних композиційних матеріалів : дис. канд. техн. наук : 05.02.09 / Мартиненко В.Г. – Харків, 2018. – 196 с.
  17. Ferry J.D. Viscoelastic properties of polymers / J.D. Ferry. – John Wiley & Sons, 1980. – 641 p.
  18. Christensen R.M. Theory of viscoelasticity. An introduction / R.M. Christensen. – New York: Academic Press, 2006. – 357 p.
  19. Roylance D. Engineering viscoelasticity / D. Roylance. – Cambridge: Massachusetts Institute of Technology, 2001. – 37 p.
  20. Imaoka S. Analyzing viscoelastic materials / S. Imaoka // ANSYS Advantage. – Vol. 2, No. 4. – 2008. – P. 46-47.
  21. ANSYS® Academic Research Mechanical, Release 17.2, Help System, Structural Analysis Guide, ANSYS, Inc.
  22. ANSYS® Academic [Електронний ресурс] – Режим доступу до ресурсу: https://www.ansys.com/academic.
  23. ANSYS® Free Student Product Downloads [Електронний ресурс] – Режим доступу до ресурсу: https://www.ansys.com/academic/free-student-products.
  24. ANSYS® Academic Terms and Conditions [Електронний ресурс] – Режим доступу до ресурсу: https://www.ansys.com/en-in/academic/terms-and-conditions.
  25. Sabonnadiere J.-K. Finite-element method in CAD / J.-K. Sabonnadiere, J.-L. Coulomb. – New York: Springer-Verlag, 1987 – 193 p.




________________

Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/