DOI: https://doi.org/10.20535/2521-1943.2019.85.164346

To the question about the calculation of the ultrasonic step-up transformer of vibrating speed with the developed radiance surface

Oleksandr Lugovskyi, Andrii Movchanyuk, Volodymyr Fesich

Abstract


The paper considers the issues of calculating the acoustic dimensions of ultrasonic stepwise composite transformers of oscillatory velocity with a developed radiation surface. The analysis of the effect on the transformation ratio of the features of oscillations of a flat developed disk surface radiation is presented. It is shown that the geometrical dimensions of the disk surface of radiation set a certain mode of surface oscillations and are associated with the requirements of specific technological processes. This requires an adjustment of the calculated value of the transformation ratio and the acoustic dimensions of the step of a smaller diameter of the composite speed transformer in order to preserve the resonant frequency. It is shown that with transformation ratios of more than 4, the one-dimensional computational model gives a significant error, since does not take into account bending vibrations of the disk surface radiation.

Keywords


ultrasonic transformers of vibrational speed; calculation of a step concentrator; disk radiating surface; ultrasonic spraying in a thin layer; performance of ultrasonic spraying

References


Lugovskoy, A. and Chukhrayev, N. (2007), Ul'trazvukovaya kavitatsiya v sovremennykh tekhnologiyakh: K. Vidavnicho–polígrafíchniy tsentr «Kyivskyi universytet», Ukraine.

Goljaminа, I. (1979), Ul'trazvuk. Malen'kajaj enciklopedija [Ultrasound. Small encyclopedia], Sovetskajaj enciklopedija, Moskow, Russia.

Kumabe, D. (1985), Vibratsionnoye rezaniye, Per. s yap. L. Maslennikova in I.I. Portnova, V.V. Belova (ed.), Mashinostroyeniye, Moskow, Russia.

Khmelev, V. and Shalunov, A. (2010), Ul'trazvukovoye raspyleniye zhidkostey, monografiya, Alt. gos. tekhn. un-t, BTI., Izd-vo Alt. gos. tekhn. un-ta, Biysk, Russia.

Lugovskoy, A.F., Fesich, V.P., Zilinskiy, A.I. and Lavrinenkov, A.D. (2017), Povysheniye proizvoditel'nosti ul'trazvukovykh raspyliteley, “Mechanics and Advanced Technologies, vol. 80, no. 2, pp. 113-122, http://dx.doi.org/10.20535/2521-1943.2017.80.111878

Luhovskyi, O. and Lyashok, A.V. (2011), “Ulʹtrazvukove rozpylennya ridyny u mekhatronnykh systemakh shtuchnoho mikroklimatu”, Promyslova hidravlika i pnevmatyka, vol. 34, no. 4, pp. 20-25.

Eknadiosyants, O. (1970) “Polucheniye aerozoley”, Fizicheskiye osnovy ul'trazvukovoy tekhnologii. in. L.D. Rozenberga (ed.), Nauka, Moskow, Russia.

Feng H., Barbosa-Cánovas G.V. and Weiss J. (Eds.), (2011), Ultrasound Technologies for Food and Bioprocessing, Food Engineering Series. – Sрringеr Science+Business Media.

Gao S., Lewis G. D., Ashokkumar M. and Hemar Y., "Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism," Ultrason. Sonochem., vol. 21, pp. 454 -460.

Lependin L.F. (1978), Akustika, Ucheb. Posobiye dlya vuzov, Vyssh. shkola, Moskow, Russia.

Zelyakh E.V. (1951), Osnovy obshcheĭ teorii lineĭnykh elektricheskikh skhem,Izd-vo AN SSSR, Moskow, Russia.


GOST Style Citations


  1. Луговской А.Ф. Ультразвуковая кавитация в современных технологиях / А.Ф. Луговской, Н.В. Чухраев. – К.: Видавничо–поліграфічний центр «Київський університет», 2007. – 244 с.
  2. Ультразвук. Маленькая энциклопедия / Глав. ред. И. П. Голямина. - М.: Советская энциклопедия, 1979. ‑ 400 с.
  3. Кумабэ Д. Вибрационное резание / Пер. с яп. Л.Масленникова / Под ред. И.И.Портнова, В.В.Белова. - М.: Машиностроение, 1985. ‑ 424 с.
  4. Хмелев В.Н. Ультразвуковое распыление жидкостей: монография / В.Н. Хмелев, А.В. Шалунов, А.В. Шалунова; Алт. гос. техн. ун-т, БТИ. – Бийск: Изд-во Алт. гос. техн. ун-та, 2010. – 250 с.
  5. Луговской А.Ф. Повышение производительности ультразвуковых распылителей / А.Ф. Луговской, В.П Фесич., А.И. Зилинский, А.Д. Лавриненков. - Mechanics and Advanced Technologies, 2 (80), 2017, С. 113-122. http://dx.doi.org/10.20535/2521-1943.2017.80.111878
  6. Луговський О.Ф. Ультразвукове розпилення рідини у мехатронних системах штучного мікроклімату / О.Ф. Луговський , А.В. Ляшок. - Промислова гідравліка і пневматика, № 4 (34),-Вінниця, 2011, С. 20-25.
  7. Экнадиосянц О.К. Получение аэрозолей.: Физические основы ультразвуковой технологии. Под ред. Л.Д. Розенберга. - М.: Наука, 1970. - С. 339-392.
  8. Feng H., Barbosa-Cánovas G.V., Weiss J. (Eds.) Ultrasound Technologies for Food and Bioprocessing / Food Engineering Series. – Sрringеr Science+Business Media, 2011. — 665 p.
  9. S. Gao, G. D. Lewis, M. Ashokkumar and Y. Hemar, "Inactivation of microorganisms by low-frequency high-power ultrasound: 2. A simple model for the inactivation mechanism," Ultrason. Sonochem. 2014. vol. 21. ‑ P. 454 -460.
  10. Лепендин Л.Ф. Акустика / Учебн. Пособие для вузов. – М.: Высш. школа, 1978. – 448 с.
  11. Зелях Э.В. Основы общей теории линейных электрических схем.– М.:Изд-во АН СССР, 1951. – 335с.




________________

Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/