DOI: https://doi.org/10.20535/2521-1943.2019.86.177924

About calculations of composite plate tensile failure in cross-section with bolt hole of single-shear bolted joint

Konstantin Rudakov, Yury Dyfuchyn

Abstract


Background. Bolted joints (BJ) are the main type of detachable connection. When designing the BJ with plates of layered composite material, there is a problem of calculating the BJ strength, in particular, the cross-sections weakened by the bolt hole. It is due to the complex nature of the interaction of the layers of the composite plate with each other and also with bolts, as well as the presence of a number of structural and technological parameters of the connection.

Objective. The main task of this research is to find the functions of influence of the magnitude of the bolt / hole gap, also structure and secondary bending of the bolt and plate on the value of the generalized stress concentration coefficient (SCC) in the cross-sections with bolt hole of the layered carbon fiber reinforced plastic (CFRP) plate using the results of BJ numerical simulation.

Methods. It was used a method of finite-elements and the 3D contact model as much as possible approached to real geometry and conditions of load application. Earlier, the authors created 24 3D models of samples of single-shear two-row bolted joint with CFRP (contact task), in which the structures of CFRP (6 variants) varied, as well as the bolt / hole gap (4 values). The magnitudes of bolt tightening force and the force that stretched the sample were unchanged. Based on the results of calculations, stress distributions were determined and values of SCC in CFRP plates in the bolt holes (tables, graphs) were obtained.

Results. Based on these results and additional calculations, the following conclusions were reached:

  • in the static calculation of composite plate tensile failure  in cross-section with hole of single-shear bolted joint the upper value estimate of the theoretical SCC  in the pin-loaded hole in the plate of orthotropic material can be obtained in accordance with the formula arising from the solution of EHS (Echavarrı’a, C., Haller, P. and Salenikovich, A).
  • in order to obtain a generalized SCC , which additionally takes into account a number of factors of BJ with CFRP, the upper value estimate of the theoretical SCC  must be multiplied by next factors:
    • function of influence of the bolt / hole gap, structure and the secondary bending of the CFRP plate;
    •  - taking into account the interplay of CFRP layers. For the considered BJ with CFRP an evaluation was obtained  ;

Conclusions. There is an easy-to-use formula for the upper estimation of SCC in a pin-loaded bolt-hole in an orthotropic material plate. The functions of influence of the bolt / hole gap, structure, and bending of the CFRP plate at first approximation are linear. The refined value of the correction factor, which takes into account the interplay of the layers of the CFRP, should be obtained in additional experiments (physical or numerical).


Keywords


a bolted joint; CFRP; numerical 3D-modelling; strength.

References


Dyfuchyn, Y.N. and Rudakov, K.N. (2016), "Numerical Modelling of Bolted Joints from Composite. The Message 1. Creation of the Mixed 3D-Models", Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, no. 2(77), pp. 100-107. DOI: http://dx.doi.org/10.20535/2305‐9001.2016.77.76975.

Dyfuchyn, Y.N. and Rudakov, K.N. (2016), "Numerical Modelling of Bolted Joints from Composite. The Message 2. Effect of the Backlash and PCM Structure on the Characteristics of the Stress-Strain State of Bolts", Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, no. 3(78), pp. 132-145. DOI: http://dx.doi.org/10.20535/2305‐9001.2016.78.87475.

Rudakov, K.M. and Dyfuchyn, Y.N. (2016), "Effect of the PCM Plate’s Structure on the Characteristics of the Stress-Strain State in the Areas of Holes of Bolted Joint with the PCM", Tekhnolohycheskye systemy. no. 4(77). pp. 28-40.

Dyfuchyn, Y. and Rudakov, K. (2017), "Numerical Modelling of Bolted Composite Joints. Bolts Rigidity Effect on Normal Stresses in the Composite Layers", Mechanics and Advanced Technologies, no. 1(79), pp. 19-25. DOI: http://dx.doi.org/10.20535/2521-1943.2017.79.95756.

Rudakov, K.M. and Dyfuchyn, Y.N. (2017), "Analysis of breaking stresses and factors of concentration of stresses in zones of holes in test-sample composite bolted joints [Analiz razryvnykh napryazhenii i koeffitsientov kontsentratsii napryazhenii v zonakh otverstii v plastinakh s PKM obraztsa boltovogo soedineniya]", Voprosy proektirovaniya i proizvodstva konstruktsii letatel'nykh apparatov: sb. nauch. tr. Nats. aerokosm. un-ta im. N.E. Zhukovskogo "KhAI", no. 3(91), pp. 47-60.

Rudakov, K. and Dyfuchyn, Y. (2018) "About calculations of net-tension failure of a bolted joint on the weakened by hole cross-section of composite plate", Mechanics and Advanced Technologies, no. 1(82). pp. 58-66. DOI: http://dx.doi.org/10.20535/2521-1943.2018.82.121050.

Rudakov, K. and Dyfuchyn, Y. (2018) "About calculations of bearing holes in a plate from a carbon fibre reinforced plastic a bolted joint", Mechanics and Advanced Technologies, no. 2(83). pp. 42-50. DOI: https://dx.doi.org/10.20535/2521-1943.2018.83.130048.

Rudakov, K., Dyfuchyn, Y. and Babienko, S. (2019) "Stress concentration factor near loaded hole contacting with the bolt in the monolayer of orthotropic composite material", Mechanics and Advanced Technologies, no. 1(85). pp. 41-48. DOI: https://doi.org/10.20535/2521-1943.2019.85.155702.

Vasilevskij, E.T., Dvejrin, A.Z., Karpov, Ja.S. and Krivenda, S.P. (2010), "System of experimental support for strength calculation of composites mechanical joints", Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, no. 47, pp. 42-52.

Kirkach, A.B. (2011), "Problemy prochnosti boltovyh soedinenij na osnove sloistyh kompozicionnyh plastikov [Strength problems of bolted joints on the basis of layered composites]", Vestnik HPI. Serija "Dinamika i prochnost' mashin". no. 63. pp. 45-54.

Dvejrin, A.Z. (2014), "Review and analysis of problem state of experiment-calculated support of design of aircraft units from polymer composites with mechanical junction of parts", Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, no. 66, pp. 5-19.

Lehnicki, S.G. (1977), Teorija uprugosti anizotropnogo tela. Izd. 2-e. [Theory of elasticity of an anisotropic body. 2nd ed.], Nauka, Moscow, Russia.

Echavarrı´a, C., Haller, P. and Salenikovich, A. (2007), Analytical study of a pin–loaded hole in elastic orthotropic plates. Composite Structures. vol.79. pp. 107–112. http://dx.doi.org/10.1016/j.compstruct.2005.11.038.

Young, W.C. and Buynas, R.G. (2002), Roark's Formulas for Stress and Strain. Seventh Edition. McGraw-Hill. 852 p.

Pilkey, W.D. and Pilkey, D.F. (2008), Peterson’s Stress Concentration Factors. Third Edition. John Wiley & Sons, Inc. Hoboken, New Jersey, Canada.

Timoshenko S. and Woinowsky-Krieger S. (1959), Theory of Plates and Shells. Second Edition. New York Toronto London: McGRAWHILL BGGK COMPANY, Inc.

Waszczak, J.P. and Cruse, T.A. (1971), Failure mode and strength predictions of anisotropic bolt bearing specimens. J. Compos. Mater. vol. 5. pp. 421–425.

Reshetnikova R.Y. (2013), “Vlijanie osevogo natjaga na lokal'noe naprjazhennoe sostojanie v odnosreznyh boltovyh soedinenijah [Influence of an axial tightness on a local stresses condition in single-shear bolted joints]”, Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov: sb. nauch. tr. Nac. ajerokosm. un-ta im. N.E. Zhukovskogo "HAI". vyp. 1 (73). pp. 87-99.

Rudakov, K.N. and Shandura, A.S. (2015), “Numeral Ground of Application of mixed 3D-Modeley Composites at Computations of Bolted Joints”, Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, no. 2(74), pp. 67–76.

Krivov G.A. Matvienko, V.A., Rud’ko, A.N., Vasilevskij, E.T., Romanovich, G.N., Rudakov, K.N., Shukaev, S.N. and Dobronravov, A.A. (2013), “Numerical Study of Stress-Strain State of High-Loaded Joints of Airframe Structural Components”, Tehnologicheskie sistemy. Kyiv : UkrNIIAT, no. 4(65). pp. 7-16.


GOST Style Citations


  1. Дифучин Ю.М. Чисельне моделювання болтових з'єднань з ПКМ. Повідомлення 1. Створення змішаних 3D-моделей / Ю.М. Дифучин, К.М. Рудаков // Вісник НТУУ "КПІ". Сер. Машинобудування, 2016. №2(77). С. 100-107. DOI: http://dx.doi.org/10.20535/2305‐9001.2016.77.76975.
  2. Дифучин, Ю.М. Чисельне моделювання болтових з'єднань з ПКМ. Повідомлення 2. Вплив зазорів і структури ПКМ на характеристики напружено-деформованого стану болтів / Ю.М. Дифучин, К.М. Рудаков // Вісник НТУУ "КПІ". Сер. Машинобудування. – 2016. – № 3(78). – С. 132-145. DOI: http://dx.doi.org/10.20535/2305‐9001.2016.78.87475.
  3. Рудаков К.М. Вплив структури ПКМ на характеристики напружено-деформованого стану в околі отворів болтових з’єднань з ПКМ / К.М. Рудаков, Ю.М. Дифучин // Технологические системы. – 2016. – №4(77). – С. 28-40.
  4. Dyfuchyn, Y. and Rudakov, K. (2017), "Numerical Modelling of Bolted Composite Joints. Bolts Rigidity Effect on Normal Stresses in the Composite Layers", Mechanics and Advanced Technologies, no. 1(79), pp. 19-25. DOI: http://dx.doi.org/10.20535/2521-1943.2017.79.95756.
  5. Дифучин Ю.М. Анализ разрывных напряжений и коэффициентов концентрации напряжений в зонах отверстий в пластинах с ПКМ образца болтового соединения / Ю.Н. Дифучин, К.Н. Рудаков // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – 2017. – Вып. 3 (91). – С. 27-39.
  6. Рудаков К.Н. О расчетах болтового соединения на разрывное разрушение ослабленного отверстием сечения композитной пластины / К.Н. Рудаков, Ю.Н. Дифучин // Mechanics and Advanced Technologies. #1(82), 2018. – С. 58-66. DOI: http://dx.doi.org/10.20535/2521-1943.2018.82.121050.
  7. Рудаков К.Н. О расчетах болтового соединения на смятие отверстий в пластине из слоистого полимерного композиционного материала // К.Н. Рудаков, Ю.Н. Дифучин / Mechanics and Advanced Technologies. #2(83), 2018. – С. 42-50. DOI: https://dx.doi.org/10.20535/2521-1943.2018.83.130048.
  8. Рудаков К.Н. Коэффициент концентрации напряжений у контактирующего с болтом нагруженного отверстия в монослое ортотропного композиционного материала / К.Н. Рудаков, Ю.Н. Дифучин, С.А. Бабиенко // Mechanics and Advanced Technologies. #1(85), 2019. – С. 41-48. DOI: https://doi.org/10.20535/2521-1943.2019.85.155702.
  9. Василевский Е.Т. Система экспериментального обеспечения расчета на прочность механических соединений деталей из композитов / Е.Т. Василевский, А.З. Двейрин, Я.С. Карпов, С.П. Кривенда // Открытые информационные и компьютерные интегрированные технологии. – 2010. – № 47. – С. 42-52.
  10. Киркач А.Б. Проблемы прочности болтовых соединений на основе слоистых композиционных пластиков / А.Б. Киркач // Вестник ХПИ. Серия "Динамика и прочность машин". – 2011. – № 63. – С. 45-54.
  11. Двейрин А.З. Обзор и анализ состояния проблемы расчетно-экспериментального обеспечения проектирования агрегатов самолета из полимерных композитов с механическими соединениями деталей / А.З. Двейрин // Открытые информационные и компьютерные интегрированные технологии. – 2014. – № 66. – С. 5-19.
  12. Лехницкий С.Г. Теория упругости анизотропного тела. Изд. 2-е. М.: Главная редакция физ-мат. лит-ры изд-ва "Наука", 1977. – 415 с.
  13. Echavarrı´a, C., Haller, P. and Salenikovich, A. (2007), Analytical study of a pin–loaded hole in elastic orthotropic plates. Composite Structures. vol.79. pp. 107–112. http://dx.doi.org/10.1016/j.compstruct.2005.11.038 .
  14. Young, W.C. and Buynas, R.G. (2002), Roark's Formulas for Stress and Strain. Seventh Edition. McGraw-Hill. 852 p.
  15. Pilkey, W.D. and Pilkey, D.F. (2008), Peterson’s Stress Concentration Factors. Third Edition. John Wiley & Sons, Inc. Hoboken, New Jersey, Canada.
  16. Timoshenko S. and Woinowsky-Krieger S. (1959), Theory of Plates and Shells. Second Edition. New York Toronto London: McGRAWHILL BGGK COMPANY, Inc.
  17. Waszczak, J.P. and Cruse, T.A. (1971), Failure mode and strength predictions of anisotropic bolt bearing specimens. J. Compos. Mater. vol. 5. pp. 421–425.
  18. Решетникова Р.Ю. Влияние осевого натяга на локальное напряженное состояние в односрезных болтовых соединениях / Р.Ю. Решетникова // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского "ХАИ". – 2013. – Вып. 1 (73). – С. 87-99.
  19. Рудаков К.М. Чисельне обґрунтування застосування змішаних 3D-моделей ПКМ при розрахунках болтових з'єднань / К.М. Рудаков, А.С. Шандура // Вісник НТУУ "КПІ". Сер. Машинобудування, 2015. – №2(74). – С. 67–76.
  20. Кривов Г.А. Численные исследования напряженно-деформированного состояния высоконагруженных соединений элементов конструкций планера самолета / Г.А. Кривов, В.А. Матвиенко, А.Н. Рудько, Е.Т. Василевский, Г.Н. Романович, К.Н. Рудаков, С.Н. Шукаев, А.А. Добронравов // Технологические системы. – К.: УкрНИИАТ, 2013. – №4(65). – С. 7-16.




Copyright (c) 2020 Mechanics and Advanced Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

________________

©Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/