DOI: https://doi.org/10.20535/2521-1943.2019.86.181790

The dimensional stability assessment of the composite honeycomb panel for the conditions of thermal and gravitational loading in a Near-Earth Orbit

M. Kryshchuk, V. Maslyey, S. Shukaev, J. Lavendels

Abstract


Abstract. The results of the numerical determination of the stress-strain state of the composite honeycomb panel under gravitational and thermal loads of varying intensity in a near-earth orbit are presented. As a simulation model of the structure under study, a typical structure of a composite cell panel with a known type of cell arrangement of honeycomb aluminum filler and reinforcement schemes for layers of carbon fiber material for upper and lower plates with known thermomechanical properties was chosen. To solve the problems of thermoelasticity, we used the finite element method in mathematical formulations for stationary thermal and quasistatic thermomechanical analysis. The distribution of the values of von Mises equivalent stresses in the structural elements of the honeycomb panel under thermal loads in the temperature range from -80 to +80 is determined. The longitudinal and transverse deflections of the honeycomb from the action of thermal loads of various intensities in the near-earth orbit are found. The limiting value of the temperature difference between the outer surfaces of the plates, which ensures the thermal stability of the composite honeycomb panel, has been established. The maximum deflections of the honeycomb have been found out from gravitational and thermal stresses in the near-Earth orbit.


Keywords


composite materials; multilayer carbon fiber plates; honeycomb; thermomechanical characteristics; thermal stability; finite element approximations; mathematical model; numerical calculations; thermal state; stress-strain state

References


Maslej, V.N., Kulik, A.S. (2017), “Methods of designing products made of polymer composite materials”, Space Science and Technology, vol. 23, № 5 (108), pp. 44-48.

Bitkina, E.V., Denisov, A.V., Bitkin, V.E. (2012), “Constructive-technological methods of creating dimensionally stable space composite structures of integral type”, Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk, vol.14. №4(2). pp. 555-560.

Maslej, V.N., Krishchuk, N.G. (2017), “Determination of the dynamic characteristics of multilayer carbon fiber plates of high-resolution scanner design”, Mechanics and Advanced Technologies, №80, pp. 45-51.

Maslei, V. N., Krishchuk, N.G., Tsybenko, A.S. (2018), “Analysis of harmonic vibration characteristics for a composite honeycomb panel of the spacecraft scanner”, Strength of Materials, Volume 50, Issue 4, pp 655–664, http://dx.doi.org/10.20535/2521-1943.2018.82.126108

Maslej, V.N., Kulik, A.S. (2017), “Analysis of the thermally stable supporting structure of the spacecraft payload device”, Aviacionno-kosmicheskaya tekhnika i tekhnologiya, Har'kov, 5/140, pp. 31-35

Rubashevskij V.V. Napruzheno-deformovanij stan stilnikovoyi paneli z vugleplastikovoyu obshivkoyu pid diyeyu vlasnoyi vagi / V.V., Rubashevskij, S.M.Shukayev // Materiali HH mizhnarodnoyi naukovo-tehnichnoyi konferenciyi, Kiyiv-Herson, 2019, s. 11-14

Kante N., Kryshchuk M., Lavendels J. (2016), Experiment plan as a discreet system equilibrium state. Applied Computer Systems, 2016, Volume 20, Issue 1, pp 49–52, DOI: http://dx.doi.org/ 10.1515/acss-2016-0015.

Lukas, Dzh. (1974), Teploobmen i teplovoj rezhim kosmicheskih apparatov [Heat transfer and thermal regime of spacecraft], pod red. N.A. Anfimova, Mir, Moscow, Russia

Horoshun, L.P., Maslov, B.P. (1980), Metody avtomatizirovannogo rascheta fiziko-mekhanicheskih postoyannyh kompozicionnyh materialov, Kyiv, Naukova Dumka

Rudakov, К.N., Masley, V.N. (2018), “To a procedure of definition of the "equivalent" physico-mechanical characteristics of a honeycomb filler of a composite plate”, Mechanics and Advanced Technologies, 2018, №84, pp. 75-85, https://doi.org/10.20535/2521-1943.2018.84.149780

Frolov G.A., Borovik D.V., Kolotilo A.D. i drugie. Issledovanie ustanovki dlya opredeleniya teplo- i tеmperaturoprovodnosti pri modelirovanii nekotoryh faktorov kosmicheskogo prostranstva. Vestnik dvigatelestroeniya. №2, pp. 9-15.

Spacecraft thermal control handbook. Ed. D.G.Gilmor. Vol. 1. Fundamental Technologies. EI Segundo, California: Aerospace Press, 2002, 836 p

Babenko, A.E., Bobyr, M.І., Bojko, S.L., Boronko, O.O. (2009) Teorіya pruzhnostі. Chastyna 1. [The theory of elasticity. Part 1], Osnova, Kyiv,

“ANSYS Structural Analysis Guide ANSYS Release 12.1”, (2009) available at: www.ansys.com/


GOST Style Citations


  1. Маслей В.Н. Методы проектирования изделий из полимерных композиционных материалов / В.Н. Маслей, А.С. Кулик // Космічна наука і технологія [Space Science and Technology], 2017. – Т. 23. – № 5(108). – C. 44-48.
  2. Биткина Е.В., Денисов А.В., Биткин В.Е. Конструктивно-технологические методы создания размеростабильных космических композитных конструкций интегрального типа // Известия  Самарского научного центра Российской академии наук. 2012. Т.14. №4(2). C. 555-560.
  3. Маслей В.Н. Определение динамических характеристик многослойных углепластиковых пластин конструкции сканера высокого разрешения / В.Н. Маслей, Н.Г. Крищук // Mechanics and Advanced Technologies, 2017, №80, ‑ C 45-51
  4. Maslei V. N., Krishchuk N.G., Tsybenko A.S. Analysis of harmonic vibration characteristics for a composite honeycomb panel of the spacecraft scanner. Strength of Materials July 2018,Volume 50, Issue 4, pp. 655–664
  5.  Маслей В.Н. Анализ терморазмеростабильной несущей конструкции прибора полезной нагрузки космического  аппарата / В.Н.  Маслей,  А.С. Кулик // Авиационно-космическая  техника  и технология , Харьков, 2017. – 5/140. – C. 31-35
  6. Рубашевський В.В. Напружено-деформований стан стільникової панелі з вуглепластиковою обшивкою під дією власної ваги / В.В., Рубашевський, С.М.Шукаєв // Матеріали ХХ міжнародної науково-технічної конференції, Київ-Херсон, 2019, C. 11-14
  7. Kante N., Kryshchuk M., Lavendels J. Experiment plan as a discreet system equilibrium state. Applied Computer Systems, 2016, Vol.20, no. 1, pp 49–52, http://dx.doi.org/ 10.1515/acss-2016-0015
  8. Лукас Дж. Теплообмен и тепловой режим космических аппаратов / под ред. Н.А. Анфимова. М.: Мир, 1974. 544 с.
  9. Хорошун Л.П.,Маслов Б.П. Методы автоматизированного расчета физико-механических постоянных композиционных материалов. – К: Наукова думка, 1980, ‑143 с.
  10. Рудаков К.Н. К методике определения "эквивалентных" физико-механических характеристик сотового заполнителя композиционной плиты / К.Н. Рудаков, В.Н. Маслей // Mechanics and Advanced Technologies, 2018, №84, ‑ C. 75-85.
  11. Фролов Г.А., Боровик Д.В., Колотило А.Д. и другие. Исследование установки для определения тепло- и температуропроводности при моделировании некоторых факторов космического пространства. Вестник двигателестроения. №2, C. 9-15.
  12. Spacecraft thermal control handbook. Ed. D.G.Gilmor. Vol. 1. Fundamental Technologies. EI Segundo, California: Aerospace Press, 2002, 836 p.
  13. Бабенко А.Є. Теорія пружності. Частина 1. Підручник / А. Є. Бабенко, М.І. Бобир, С.Л. Бойко, О.О.Боронко – Київ : Основа, 2009. – 244 с.
  14. “ANSYS Structural Analysis Guide ANSYS Release 12.1.” (2009) available at : www.ansys.com/




Copyright (c) 2020 Mechanics and Advanced Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

________________

©Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/