DOI: https://doi.org/10.20535/2521-1943.2019.86.185849

Chatter suppression technologies for metal cutting

Y. V. Petrakov

Abstract


Background. The cutting process is carried out in a closed elastic technological machining system and is always accompanied by vibrations. Vibrations arising during cutting, depending on the amplitude, can very slightly affect the machining result, and can lead to a catastrophic loss of stability of the whole process. In any case, all researchers agree that vibration is the factor that ultimately determines the productivity of the cutting process and the quality of the machined surface.

Objective. The aim of this study is to develop new technologies for selecting parameters for controlling the cutting speed to suppress chatter by passive methods, as well as to control the drive of the forming motion to suppress chatter by active methods.

Methods. The goal is achieved by creating new technologies aimed at the study of dynamic processes occurring in the cutting. It is noted that the mathematical model of the cutting process should be built taking into account the loop closed of the elastic technological machining system and the function of the delayed argument, which represents machining “on the trail”. When studying the cutting process, four main groups of factors that influence its mathematical representation are taken into account, and three approaches are used to determine the stability diagram: frequency analysis, root analysis of the characteristic equation of motion of the system and the numerical method. The numerical method using the amplitude-frequency characteristics according to the corresponding stability criterion is considered to be the most effective.

Results. The results of theoretical studies are used in practice in the form of technologies for passive and active chatter reduction during cutting. A technology has been developed to suppress vibrations during face milling when controlling the spindle speed according to a harmonic law. An application program for simulating a process for determining the parameters of the control law is presented. For active control, a new technology is proposed, based on the use of a CNC machine drive with an additional closed system, introducing a harmonious signal into the channel of the shaping movement, the amplitude and phase of which are automatically adjusted using the coordinate-wise descent algorithm according to the criterion of the minimum amplitude of the motor current.

Conclusions. The technology of chatter suppression during face milling by controlling the spindle speed according to the harmonic law is limited by the speed of the spindle drive and its inertial characteristics. The active chatter control system uses a standard servo drive of the CNC machine, which has an additional closed loop for automatically searching for the amplitude and phase of the compensating control signal

Keywords


chatter; cutting process; mathematical model; stability of the cutting process

Full Text:

PDF

References



GOST Style Citations


  1. Yue C., Gao H., Liu X., Liang S., Wang L. A review of chatter vibration research in milling // Chinese Journal of Aeronautics, 2019, vol. 2, no. 32. P. 215 – 242.
  2. Корендясев Г.К. О физических моделях возбуждения автоколебаний при резании // Вестник научно-технического развития. – 2013. – Том. 71, №7. – С. 15 ‑ 25.
  3. Altintas Y. Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design // Cambridge University Press, New York, NY 10013-2473, USA, – 2012. – 366 p.
  4. Stephenson D., Agapiou J. Metal cutting. Theory and practice. // CRC Press Taylor & Francis Group, 956 p.
  5. Петраков Ю.В., Трибрат К.О. Моделювання автоколивань при токарному обробленні // Міжвузівський збірник "НАУКОВІ НОТАТКИ". Луцьк. – 2019. №66, С. 263 – 270.
  6. Moradi H., Movahhedy M.R. Vossoughi G. Tunable vibration absorber for improving milling stability with tool wear and process damping effects. // Mech Mach Theory. – 2012. – 52. – P. 59 – 77.
  7. Петраков Ю.В., Трибрат К.О. Забезпечення динамічних характеристик технологічної оброблювальної системи // Матеріали XVІІІ Міжнародної науково-практичної конференції, «Машинобудування очима молодих: прогресивні ідеї – наука – виробництво», Краматорськ. – 2018. – С. 152 – 155.
  8. Sallese L, Innocenti G, Grossi N, and dr. Mitigation of chatter instabilities in milling using an active fixture with a novel control strategy. // Int J Adv Manuf Technol. – 2017. – 89 (9–12), P. 2771 – 87.
  9. Al-Regib, E., Ni, J., Lee, S.-H., Programming spindle speed variation for machine tool chatter suppression. // Int. J. of Machine Tool and Manuf. – 2003. – vol. 43. – P. 1229 – 1240.
  10. Bediaga I., I Egana I., Munoa J., Zatarain M., Lacalle L. Chatter avoidance method for milling process based on sinusoidal spindle speed variation method: simulation and experimental results // CIRP International Workshop on Modeling of Machining Operations, 2015. https://hal.archives-ouvertes.fr/hal-01110029
  11. Petrakov Y., Danylchenko M., Petryshyn A. Programming spindle speed variation in turning. Eastern-Eropean Journal of Enterprise Technologies. – 2017. – vol. 2, no. 1 (86). – P. 4 – 9. https://doi.org/10.15587/1729-4061.2017.95204
  12. Munoa J, Mancisidor I, Loix N, Uriarte LG, Barcena R. Chatter suppression in ram type travelling column milling machines using a biaxial inertial actuator. // CIRP Ann- Manuf Technol. – 2013. – 62 (1). – P. 407 – 10.
  13. Nicolescu N., Frangoudis C., Semere D., Archenti A., Rashid A. New paradigm in control of machining system’s dynamics // Journal of Machine Engineering. – 2015. vol. 15, no. 3. – P. 117 – 137.
  14. Tyler C., Troutman J., Schmitz T. Radial depth of cut stability lobe diagrams with process damping effects // Precision Engineering. – 2015. no. 40. – P. 318 – 324.
  15. Петраков Ю.В. Проектирование технологической оснастки: Лабораторно-компьютерный практикум (Russian Edition) LAP LAMBERT Academic Publishing, 2015. – 184 p.
  16. Wang C, Zhang X, Liu Y, Cao H, Chen X. Stiffness variation method for milling chatter suppression via piezoelectric stack actuators. Int J Mach Tool Manuf. – 2017. – no. 124. – P. 53 – 6.




Copyright (c) 2020 Mechanics and Advanced Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

________________

©Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/