Thermal barrier coatings on niobium-based alloys structural materials


  • V. P. Babak Institute of Engineering Thermophysics of NAS of Ukraine, Ukraine
  • V. V. Shchepetov Institute of Engineering Thermophysics of NAS of Ukraine, Ukraine
  • T. T. Suprun Institute of Engineering Thermophysics of NAS of Ukraine, Ukraine
  • O. V. Kharchenko National Aviation University, Ukraine
  • S. D. Kharchenko Institute of Engineering Thermophysics of NAS of Ukraine, Ukraine



alloy, structure, system, temperature, coatings


Abstract. During thermocyclic creep, the properties of a niobium alloy with a two-layer combined coating were studied at a temperature of 1400 ºС in air. A comparison of the data obtained with other coatings is made. The role of the shape and distribution of cracks in the mechanism of strength degradation of coatings is investigated. Consideration of many factors in the formation of the combined coating ensured an increase in its durability of 1.9...8.5 folds depending on the temperature mode of creep.

The applied structural materials do not provide the relevant requirements for the development of modern technology, the need to increase their functionality. Thus, the operational capabilities of nickel alloys, which for decades have provided the aerospace complex, have almost reached the upper limit. One of the actually directions for solving the existing situation is the alternative use of new generation heat-resistant materials for modern highly reliable equipment. For example, the use of niobium-based alloys, the prospect of which is due to their physicomechanical properties than excellent similar products.


  1. Dzyadykevich, Yu.V. (2010), Zashchitnye pokrytiya na niobii, tantale, molibdene i vol'frame dlya povysheniya stoikosti i vysokotemperaturnomu okisleniyu, Poroshkovaya metallurgiya, no. 4, pp. 37 – 42
  2. Dzyadykevich, Yu.V. (2011), “Povyshenie zharostoikosti tugoplavkikh metallov”, Neorgan. mater., no. 11, pp. 1405 – 1408.
  3. Jiadou, Yu (2012), “Oxidation resistant coatings on refractory metals”, Actual Probl. Mod. Mater. Sci.: 1St Russ. Chin. Symp., Russ. Cent. Constr. and Funct. Mater., Tomsk, Moscow, Russia, pp. 88 – 89.
  4. Babak, V.P. and Shchepetov, V.V. (2017), Wear resistance of amorphous-crystalline coatings with solid lubricant, Journal of Friction and Wear, vol. 38, pp. 65 – 70.
  5. Zmii, V.I., Ruden'kii, S.G., Bredikhin, M.Yu. and dr. (2008), Zharostoikie pokrytiya na niobii i ego splavakh, Poroshkovaya metallurgiya, , no. 3. pp. 23 – 29.
  6. Glushko, P.I., Zmii, V.I., Semenov, N.A. and dr. (2003), “Stabil'nost' i zharostoikost' silitsidnykh pokrytii na tugoplavkikh metallakh. III. Stabil'nost' silitsidnykh pokrytii na niobii v usloviyakh vysokotemperaturnogo nagreva na vozdukhe pri 1500-1800ºS”, Poroshkovaya metallurgiya, no. 3/4, pp. 55 – 59.
  7. Adamyan, T.A. and Kharatyan, S.L. (2010), “On the singularity of high temperature carbidization of niobium”, J. Alloys and Compounds, no. 1 – 2, pp. 418 – 422,
  8. Murakami, T., Sasaki, S., Ito K. and dr. (2004), “Microstructure of Nb substrates coated with Mo(SiAl)2-Al2O3 composite and B-doped Mo5Si3 layer by spark plasma sintering”, Intermetallics, no. 7 – 9, pp. 749 – 754.
  9. Alov, N.V. (2007), “Surface oxidation of metals by oxygen ion bombardment”, Nucl. Instrum. and Meth. Phys. Res. B., no. 1. pp. 337 – 340.
  10. Babak, V.P., Shchepetov, V.V. and Yakovleva, M.S. (2017), Vysokotemperaturnyi iznosostoikii material; С23С 4/067, Opub. ot 27.03.2017; Byul. №6, Ukraine, Patent №113934.
  11. Bukhanovskii, V.V., Borisenko, V.A., Kharchenko, V.V. and dr. (2004), “Vysokotemperaturnaya prochnost' niobievogo splava 5VMTs s silitsidno-keramicheskim zashchitnym pokrytiem. Soobshchenie 1. Kharakteristiki kratkovremennoi prochnosti”, Problemy prochnosti, no. 2, pp. 119 – 129.
  12. Babak, V.P. and Shchepetov, V.V. (2019), “Increased wear coatings due intrastructural stlf corrtction”, Journal of engineering sciences, no. 2. pp.11 – 15.
  13. Guille, J. and Matini, L. (2016), “Microindentation characterization of silicide coatings on niobium and titanium”, J. Maters. Sci. Lett., 7. no. 9, pp. 952 – 954.
  14. Thermo-mechanical fatigue of aero-engine turbine blades (2014), Metallurgia, no. 5, pp. 180.
  15. Zhang, Y.H., Withers, P.J., Fox, M.D. and dr. (2009), “Damage mechanisms of coated systems under thermomechanical fatigue”, Mater Sci. and Technol., no. 9, pp. 1031 – 1036.
  16. Heidenreich, R., Papenburg, U., Schäfer R. (2014), “Prüftechnik für Hochtemperatur – Konstruktionswerkstoff”, Mat.-wis. U. Werstofftech, no. 25, pp. 30 – 38.




How to Cite

V. P. Babak, V. V. Shchepetov, T. T. Suprun, O. V. Kharchenko, and S. D. Kharchenko, “Thermal barrier coatings on niobium-based alloys structural materials”, Mech. Adv. Technol., no. 2(86), pp. 44–50, Nov. 2019.