DOI: https://doi.org/10.20535/2521-1943.2019.87.189798

Modeling of Gas-Dynamic Processes in Pipelines at Waste Disposal

S. Medvediev, Valery Badah

Abstract


Abstract. A modern passenger aircraft cannot be considered without requirements for ensuring the safety and comfort of passengers on board. One of the systems provides the necessary comfortable conditions on the plane, there is a waste disposal system that is designed to meet the physiological needs of the human body. Today, a promising type of waste disposal system is the vacuum principle system. The development of such systems, consisting of devices based on heterogeneous physical principles of functioning, is a complex scientific and technical problem associated with conducting diverse applied research in the design, development and targeted use of the system. One of the main elements of the system is the pipelines connecting the waste collection tank to the waste storage tank. Important in the design of pipelines is the determination of their overall and gas-dynamic characteristics in the early stages of development. The aim of the work presented in the article is to study the process of waste disposal in the pipeline and build a mathematical model that describes gas-dynamic processes.


Keywords


vacuum; aircraft; waste disposal system; pipeline; waste; mathematical model.

References


Raymer, D.P. (2018), Konstruktsiya litalʹnykh aparativ: kontseptualʹnyy pidkhid [Aircraft Design: A Conceptual Approach], 6th ed. AIAA education series, Institute of Aeronautics and Astronautics, Washington D.C.

Jenkinson, L. R., Simpkin, P. and Rhodes, D. (1999), Tsyvilʹnyy reaktyvnyy litak [Civil Jet Aircraft Design], Arnold, London.

Balabuev, P.V., Byichkov, S.A., Grebenikov, A.G. i dr. (2003), Osnovyi obschego proektirovaniya samoletov s gazoturbinnyimi dvigatelyami [Fundamentals of general aircraft design with turbine engines], Nats. aerokosm. un-t im. N.E. Zhukovskogo «XAI», Kharkiv, Ukraine.

Hoffman, D., Singh, B. and Tomas, J. (2011), Handbook of Vacuum Science and Technology [Spravochnik po vakuumnoy tehnike i tehnologiyam], 3 rd ed. Translated by Romanenko, V.A., in Nesterova, S.B. (ed.), Tehnosfera, Moscow, Russia.

Hablanyan, M.H., Saksaganskiy, G.L. and Burmistrov, A.V. (2013), Vacuum technology. Equipment, design, technology, operation. Part 1. Engineering and physical foundations: a training manual [Vakuumnaya tehnika. Oborudovanie, proektirovanie, tehnologii, ekspluatatsiya. Ch.1. Inzhenerno–fizicheskie osnovyi: uchebnoe posobie], KNITU, Kazan, Russia.

Chekurin, V., Ponomaryov, Yu. and Khymko, O. (2015), “A mathematical model for evaluation the efficiency of gas-main pipelines in transient operational modes econtechmod”, An international quarterly journal, vol. 4, no. 3, pp. 25 – 32.

Shams, M., Raeini, A.Q., Blunt, M.J. and Bijeljic B. (2018), “A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method”, Journal of Computational Physics, vol. 357, pp. 159 – 182. https://doi.org/10.1016/j.jcp.2017.12.027

Ganapathy, H., Shooshtari, A., Dessiatoun, S., Ohadi, M. and Alshehhi, M. (2015), “Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes”, Chemical Engineering Journal, vol. 266, pp. 258 – 270.

Meziou, A., Chaari, M., Franchek, M., Borji, R., Grigoriadis, K. and Tafreshi, R. (2016), “Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines”, J. Dyn. Sys., Meas., Control, vol. 138, no. 10, pp. 70 – 86. https://doi.org/10.1115/1.4033865

Pyanylo, Ya.D., Prytula, M.G., Prytula, N.M. and Lopuh, N.B. (2014), “Models of mass transfer in gas transmission systems”, Mathematical Modeling and Сomputing, vol. 1, no. 1, pp. 84 – 96.

Sumskoi, S.I., Sofin, A.S. and Lisanov, M.V. (2016), “Developing the model of non-stationary processes of motion and discharge of single – and two-phase medium at emergency releases from pipelines”, Journal of Physics: Conference Series, vol. 751, no.1, pp. 1 – 8.

Capecelatro, J. and Desjardins, O. (2016), “Eulerian – Lagrangian modeling of turbulent liquid – solid slurries in horizontal pipes”, International journal of multiphase flow, no. 55, pp. 64 – 79.

Abramovich, G.N. (1991), Prikladnaya gazovaya dinamika [Applied gas dynamics], in 2 hours. vol. 1: Textbook manual: For technical colleges, – 3rd ed., Revised and ad., Nauka. Gl. red. fiz-mat. Lit. vol.2, no.1, Moscow, Russia.

Idelchik, I. E. (1997), Spravochnik po gidravlicheskim soprotivleniyam [Hydraulic Resistance Reference], 3rd ed. in Shteynberga, M.O.(ed.) Mashinostroenie, Moscow, Russia.

Bertman, A.F., Abramovich, I.G (1966), A short course in mathematical analysis for technical colleges [Kratkiy kurs matematicheskogo analiza dlya vtuzov], Moscow, Russia.


GOST Style Citations


  1. Raymer D.P. Aircraft Design: A Conceptual Approach. 6th ed. AIAA education series. Washington, D.C.: American Institute of Aeronautics and Astronautics, 2018. – 1062 p.
  2. Jenkinson L. R. Civil Jet Aircraft Design / L. R. Jenkinson, P. Simpkin, D. Rhodes – London: Arnold, 1999. – 444 р.
  3. Балабуев П.В. Основы общего проектирования самолетов с газотурбинными двигателями: учеб. пособие: в 2 ч. / П.В. Балабуев, С.А. Бычков, А.Г. Гребеников и др. – Х.: Нац. аэрокосм. ун-т им. Н.Е. Жуковского «XAИ», 2003. – Ч. 1. – 454 с.
  4. Хоффман Д. Справочник по вакуумной технике и технологиям / Д. Хоффман, Б. Сингх, Дж. Томас III, пер. с англ. под ред. В.А. Романенко, С.Б. Нестерова. – Москва: Техносфера, 2011. – 736 с.
  5. Хабланян М.Х. Вакуумная техника. Оборудование, проектирование, технологии, эксплуатация. Ч.1. Инженерно–физические основы: учебное пособие. М–во образ. и науки России, Казан. нац. исслед. технол. ун–т / М.Х. Хабланян, Г.Л. Саксаганский, А.В. Бурмистров – Казань: Изд–во КНИТУ. 2013. 232 с.
  6. Chekurin V. A mathematical model for evaluation the efficiency of gas-main pipelines in transient operational modes econtechmod / V. Chekurin, Yu. Ponomaryov, O. Khymko // – An international quarterly journal. – 2015, vol. 4, no.3, pp. 25 – 32.
  7. Shams M. A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method / M. Shams, A.Q. Raeini, M.J. Blunt, B. Bijeljic // – Journal of Computational Physics. – 2018, vol. 357, pp. 159 – 182.  https://doi.org/10.1016/j.jcp.2017.12.027
  8. Ganapathy H. Hydrodynamics and mass transfer performance of a microreactor for enhanced gas separation processes / H. Ganapathy, A. Shooshtari, S. Dessiatoun, M. Ohadi, M. Alshehhi // – Chemical Engineering Journal. – 2015, vol. 266, pp. 258 – 270.
  9. Meziou A. Low-Dimensional Modeling of Transient Two-Phase Flow in Pipelines / A. Meziou, M. Chaari, M. Franchek, R. Borji, K. Grigoriadis, R. Tafreshi // – J. Dyn. Sys., Meas., Control. – 2016. – vol. 138, no 10. – pp. 70 – 86. https://doi.org/10.1115/1.4033865 
  10. Pyanylo Ya.D. Models of mass transfer in gas transmission systems / Ya.D. Pyanylo, M.G. Prytula, N.M. Prytula, N.B. Lopuh // – Mathematical Modeling and Сomputing. – 2014. – vol. 1, no 1. – pp. 84 – 96.
  11. Sumskoi S.I. Developing the model of non-stationary processes of motion and discharge of single - and two-phase medium at emergency releases from pipelines / S.I. Sumskoi, A.S. Sofin, M.V. Lisanov // – Journal of Physics: Conference Series. – 2016. – vol. 751, no 1. – pp. 1 – 8.
  12. Capecelatro J. Eulerian – Lagrangian modeling of turbulent liquid–solid slurries in horizontal pipes / J. Capecelatro, O. Desjardins // – International journal of multiphase flow. – 2016. – no. 55. – pp. 64 – 79.
  13. Абрамович Г.Н. Прикладная газовая динамика. В 2 ч. Ч. 1: Учеб руководство: Для втузов. – 3-е изд., перераб и доп. –М.: Наука. Гл. ред. физ-мат. лит, 1991. – 600 с.
  14. Идельчик И. Е. Справочник по гидравлическим сопротивлениям / Под ред. М. О. Штейнберга. – 3-е изд., перераб. и доп. М.: Машиностроение, 1997. – 672 с.
  15. Бертман А.Ф. Краткий курс математического анализа для втузов / А.Ф. Бертман, И.Г Абрамович. – М., 1966 г. –763 стр. с илл.

 





Copyright (c) 2020 Mechanics and Advanced Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

________________

©Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/