Experimental-analytical method for construction of visco-plastic material model for titanium alloy BT6 based on bending tests

Authors

  • Viacheslav Titov Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine https://orcid.org/0000-0002-4234-6961
  • Tetiana Haranenko Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine
  • Andrii Titov Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2019.87.190551

Keywords:

experimental-analytical method, viscoplastic model of the material, bending tests, VT6 titanium alloy, stress intensity, strain rate, kinematic bending model, isothermal deformation conditions, hot plastic deformation.

Abstract

Abstract. A method of experimental-analytical construction of deformation curves based on bending tests has been developed. The method is based on the solution of the system of equations of equilibrium of moments of internal and external forces with a clean bending of the workpieces. Equations for finding linear coefficients of approximation of the deformation curve describing the viscoplastic models of the material obtained theoretically on the basis of the kinematic model of pure bending, which relates the geometric parameters of the workpiece to the components of the strain rate tensor of the workpiece material and the time of its deformation. Based on experimentally determined time dependences of the internal radius of the workpiece under the action of a constant torque, using a system of equations, the dependence of the stress intensity on the strain rates for the VT6 titanium alloy at a deformation temperature of 900 °С is obtained. Comparison of the calculation results with the known data used in the Deform 3D software package for the Ti-6Al-4V titanium alloy (foreign analogue of VT6 in chemical composition) showed that the maximum error does not exceed 16 %. The obtained viscoplastic models of the material can be used to calculate the shaping operations in metal forming.

References

  1. Smirnov, O.M., Tulupov, S.A., Tsepin, M.A., Lisunets, N.L. and Begnarskii, V.V. (2008), “Reologicheskie modeli kak osnovnoi element modelirovaniya protsessov obrabotki metallov davleniem”, Chyong An Nguen, Vestnik MGTU im. G.I. Nosova, no.2, pp. 45–52.
  2. Surajit Kumar Paul (2012) “Predicting the flow behavior of metals under different strain rate and temperature through phenomenological modeling”, Computational Materials Science, vol. 65, pp. 91–99. https://doi.org/10.1016/j.commatsci.2012.06.039
  3. Sidoroff, F. and Teodosiu, C. (1986), “Large Deformations of Solids: Physical Basis and Mathematical Modelling Microstructure and Phenomenological Models for Metals”, pp. 163–186.
  4. Christopher P. Kohar, John L. Bassani, Abhijit Brahme, Waqas Muhammad, Raja K. Mishra, Kaan Inal. (2019), “A new multi-scale framework to incorporate microstructure evolution in phenomenological plasticity: Theory, explicit finite element formulation, implementation and validation”, International Journal of Plasticity, vol. 117, pp. 122–156.
  5. Ghamarian, V.I., Hayes, B., Samimi, P., Welk, B.A., Fraser, H.L. and Collin, P.C. (2016), ”Developing a phenomenological equation to predict yield strength from composition and microstructure in β processed Ti-6Al-4”, Materials Science and Engineering, pp. 172–180.
  6. Kachanov, L.M. (1969), Osnovy teorii plastichnosti [Fundamentals of plasticity theory], Nauka, Moscow, Russia.
  7. Titov, Vyacheslav and Garanenko, Tetiana (2019), “Development of an experimental technique and evaluate limit of plastic deformation of titanium alloy OT4 under superplastic conditions”, Solid State Phenomena, vol. 291, pp. 183–192.
  8. Bartier, O. and Hernot, X. (2012), “Phenomenological study of parabolic and spherical indentation of elastic-ideally plastic material”, International Journal of Solids and Structures, vol. 49, no. 14, pp. 2015–2026.
  9. Guoliang, Ji, Lei, Li, Fangli, Qin, Liyuan, Zhu and Qiang, Li. (2017), “Comparative study of phenomenological constitutive equations for an as-rolled M50NiL steel during hot deformation”, Journal of Alloys and Compounds, vol. 695, pp. 2389–2399.
  10. Soheil Solhjoo, Antonis I., VakisYutao, T.Pei. (2017), “Two phenomenological models to predict the single peak flow stress curves up to the peak during hot deformation”, Mechanics of Materials, vol. 105, pp. 61–66. https://doi.org/10.1016/j.mechmat.2016.12.001
  11. Krivitskii, B.A. and Arsent'eva, K.S. (2012), “Sovershenstvovaniya metodiki opredeleniya reologicheskikh svoistv titanovykh splavov” Titan, no.4, pp. 14–16.
  12. Kaibyshev, O.A. and Utyashev, F.Z. (2002), Sverkhplatichnost', izmel'chenie struktury i obrabotka trudnodeformiruemykh splavov [Superplasticity, structure shredding and processing of hard-alloyed alloys], Nauka, Moscow, Russia.
  13. Rabotnov, Yu.N., Rabotnov, Yu.N. and Mileiko, S.T. (1970), Kratkovremennaya polzuchest' [Short-term creep], Nauka, Moscow, Russia.
  14. Panchenko, E.V. (1977), “Eksperimental'noe opredelenie parametrov m i K uravneniya mekhanicheskogo sostoyaniya materialov pri pnevmoformovke v rezhime sverkhplastichnosti”, Issledovaniya v oblasti plastichnosti i obrabotki metallov davleniem, izd. Tul'skogo politekhnicheskogo instituta, Tula, Russia.
  15. Enikeev, F.U. (2008), “Mathematical modeling of processes of pressure treatment of industrial titanium alloys in the superplasticity state”, https://link.springer.com/journal/11981">Russian Journal of Non-Ferrous Metals, vol. 49, no. 1, pp. 43–50.
  16. Malinin, N.N. (1975), Prikladnaya teoriya plastichnosti i polzuchesti [Applied Theory of Plasticity and Creep], Mashinostroenie, Moscow, Russia.
  17. Shlomchak, G.G., Firsova, T.I., Sosnev, I.Yu. (2009), Aspekty stanovleniya i razvitiya reologicheskoi kontseptsii. Obrabotka materialov davleniem, vol. 21, no. 2, pp. 147–150.
  18. Pisarenko, G.S. and Strizhalo, V.A. (2018), Eksperimental'nye metody v mekhanike deformiruemogo tverdogo tela, [Experimental methods in the mechanics of a deformable solid], Naukova dumka, Kiev, Ukraine.
  19. Antsiferov V.N., Sokolkin, Yu.V., Tashkinov, A.A. and dr. (1990), Voloknistye kompozitnye materialy na osnove titana [Titanium Fibrous Composite Materials], Nauka, Moscow, Russia.
  20. Titov, V.A. and Garanenko, T.R. (2015), Metod eksperimental'no-analiticheskogo postroeniya krivykh deformirovaniya materialov pri ispytanii na izgib [ The method of experimental-analytical construction of material deformation curves during a bending test], Soobshchenie 1, Obrabotka metallov davleniem, no.2, pp. 74–80
  21. Titov, V.A. and Garanenko, T.R. (2016), Osobennosti postroeniya vyazkoplasticheskikh modelei metallov pri ispytanii na izgib [Features of the construction of viscoplastic models of metals in bending tests], Soobshchenie 2, Obrabotka metallov davleniem, no.1, pp. 45–51.
  22. Evstratov, V.A. (1981), Teoriya obrabotki metallov davleniem [Theory of metal forming], Vysshaya shkola, Khar'kov, Ukraine.
  23. Kaibyshev, O.A. (1975), Plastichnost' i sverkhplastichnost' metallov [Plasticity and superplasticity of metals], Metallurgiya, Moscow, Russia.

Published

2019-12-29

How to Cite

[1]
V. Titov, T. Haranenko, and A. Titov, “Experimental-analytical method for construction of visco-plastic material model for titanium alloy BT6 based on bending tests”, Mech. Adv. Technol., no. 3(87), pp. 26–37, Dec. 2019.

Issue

Section

Mechanics