DOI: https://doi.org/10.20535/2521-1943.2020.88.200290

Express estimation of stress concentration factor near the hole loaded with a bolt in a plate from a layered polymeric composite material. Impact of monolayers stacking sequence

Konstantin Rudakov, Yury Dyfuchyn

Abstract


Problematic. Among the various options for joining parts from layered polymer composite materials (PCM), a significant percentage is bolted joints (BJ). For their proper design, it is necessary, in particular, to carry out strength calculations. In this case, it is desirable to replace complex finite element calculations with express analysis: calculations using simple formulas of sufficient accuracy. One of the main strength calculations of BJ is the calculation of tensile strength of the section weakened by the hole. For BJ plates made from PCM, this question has not been worked out enough.

Research objective. Establish of the impact degree of the monolayers stacking sequence of a PCM plate on the value of the stress concentration factor (SCF) near the hole loaded with a bolt.

Realization technique. Numerical calculations were carried out using the finite element method (contact problem) for a BJ plate made of layered PCM. A 3D-orthotropy of each monolayer was assumed. Two simple express analysis formulas were tested. Diagrams were built, the presence and impact degree of the monolayers stacking sequence in a laminated PCM plate on the change of the SCF values were established.

The results of research. Based on the calculation results, numerical estimates are obtained that characterize the impact degree of the monolayers stacking sequence in a laminated PCM plate and the accuracy of the considered formulas.

Conclusions. The calculations showed that change of the monolayers stacking sequence of the layered PCM leads to a significant change of the SCF values near the bolt-loaded hole in the plate section weakened by the hole; that the proposed approximation (17) has insufficient accuracy for the considered materials and monolayers stacking sequences. It is necessary to continue the search for the correction function for (15) on a wider calculation and experimental base of PCM properties.

Keywords


polymer composite material; bolted joints; stress concentration factor

References


Karpov, Ya.S. (2006), Soedineniya detalei i agregatov iz kompozitsionnykh materialov [Junctions of details and units from composite materials], Khar'kov: Nats. aerokosm. un-t "Khar'k. aviats. in-t". 359 p. (In Russian).

Vasilevskii, E.T., Dveirin, A.Z., Karpov, Ya.S. and Krivenda, S.P. (2010), "System of experimental support for strength calculation of composites mechanical joints", Otkrytye informatsionnye i komp'yuternye integrirovannye tekhnologii. – Kharkov, Ukraine : NAKU "KhAI", no. 47. pp. 42-52. (In Russian).

Kirkach, A.B. (2011), "Problemy prochnosti boltovyh soedinenij na osnove sloistyh kompozicionnyh plastikov [Strength problems of bolted joints on the basis of layered composites]", Vestnik HPI. Serija "Dinamika i prochnost' mashin". no. 63. pp. 45-54. (In Russian).

ECSS‑E‑HB‑32‑20. Part 1А. Structural materials handbook – Part 1: Overview and material properties and applications. (2011), available at : http://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part1A.pdf.

ECSS‑E‑HB‑32‑20, Part 2А. Structural materials handbook – Part 2: Design calculation methods and general design aspects. (2011), available at : http://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part2A.pdf

Dvejrin, A.Z. (2014), "Review and analysis of problem state of experiment-calculated support of design of aircraft units from polymer composites with mechanical junction of parts", Otkrytye informacionnye i komp'juternye integrirovannye tehnologii, no. 66, pp. 5-19. (In Russian).

Gagauz, P.M., Gagauz, F.M., Karpov, Ya.S. and Krivenda, S.P. (2015), “Proektirovanie i konstruirovanie izdelii iz kompozitsionnykh materialov. Teoriya i praktika: uchebnik; pod obshch. red. Ya.S. Karpova" [Projection and constructing of articles from composite materials. The theory and practice: the textbook], Kharkov, Ukraine : Nats. aerokosm. un-t im. N.E. Zhukovskogo "Khar'k. aviats. in-t". 672 p. (In Russian).

Grover, H.J. (1966), NAVAIR 01-1A-13. Fatigue of Aircraft Structures. NAVAL Air Systems Command Department of the NAVY.

Reshetnikova R.Y. (2013), “Vlijanie osevogo natjaga na lokal'noe naprjazhennoe sostojanie v odnosreznyh boltovyh soedinenijah [Influence of an axial tightness on a local stresses condition in single-shear bolted joints]”, Voprosy proektirovanija i proizvodstva konstrukcij letatel'nyh apparatov: sb. nauch. tr. Nac. ajerokosm. un-ta im. N.E. Zhukovskogo "HAI". vyp. 1 (73). pp. 87-99. (In Russian).

Rudakov, K. and Dyfuchyn, Y. (2018) "About calculations of net-tension failure of a bolted joint on the weakened by hole cross-section of composite plate", Mechanics and Advanced Technologies, no. 1(82). pp. 58-66. DOI: 10.20535/2521-1943.2018.82.121050. (In Russian).

Savin, G.I. (1979), Mekhanika deformiruemykh tel. Izbrannye trudy [Mechanics of deformable bodies. The Selected transactionses], Naukova dumka, Kiev, Ukraine.

Young, W.C. and Buynas, R.G. (2002), Roark's Formulas for Stress and Strain. Seventh Edition. McGraw-Hill. 852 p.

Johnson, K.L. (1985), Contact mechanics, Cambridge University Press, Cambridge, Great Britain.

Ciavarella, M., Baldini, A., Barber, J.R. and Strozzi, A. (2006), Reduced dependence on loading parameters in almost conforming contact. Int. J. Mech. Sci., 48, pp. 917–925.

De Jong, T. (1977), Stresses around pin–loaded holes in elastically orthotropic or isotropic plates. J. Compos. Mater. vol.11. pp. 313–331.

Bolotin, V.V. and Novichkov, Ju.N. (1980), Mehanika mnogoslojnyh konstrukcij [Mechanic of multilayered structures], Mashinostroenie, Moscow, Russia.

Milton Graeme W. (2004), The Theory of Composites. Cambridge University Press. 719 p.

Rudakov K.N. (2011), FEMAP 10.2.0. Geometricheskoe i konechno-elementnoe modelirovanie konstruktsii [Geometrical and FEM of designs­], Kiev, Ukraine, available at : http://www.cad.dp.ua/stats/FEMAP-102.php. (In Russian).

Dyfuchyn, Y.N. and Rudakov, K.N. (2016), "Numerical Modelling of Bolted Joints from Composite. The Message 1. Creation of the Mixed 3D-Models", Journal of Mechanical Engineering NTUU “Kyiv Polytechnic Institute”, no. 2(77), pp. 100-107. DOI: 10.20535/2305‐9001.2016.77.76975. (In Ukrainian).

Rudakov, K. and Maslyey, V. (2019) "To definition of elasticity modules of plate from unidirectional high-modules carbon fibre", Mechanics and Advanced Technologies, no. 3(87). pp. 7-15. DOI: 10.20535/2521-1943.2019.87.189220. (In Russian).

Rudakov, Konstantin, Dyfuchyn, Yury and Babienko, Sergey (2019), "Stress concentration factor near loaded hole contacting with the bolt in the monolayer of orthotropic composite material". Mechanics and Advanced Technologies, no. 1(85). pp.41-48. DOI: 10.20535/2521-1943.2019.85.155702. (In Russian).

Waszczak, J.P. and Cruse, T.A. (1971), Failure mode and strength predictions of anisotropic bolt bearing specimens. J. Compos. Mater. vol. 5. pp. 421–425.

Zhang, K. and Ueng, C. (1985), Stresses around a pin–loaded hole in orthotropic plates with arbitrary loading direction. Compos. Struct. Vol. 3. pp. 119–143.

Echavarrı´a, C., Haller, P. and Salenikovich, A. (2007), Analytical study of a pin–loaded hole in elastic orthotropic plates.Composite Structures. vol.79. pp. 107–112. DOI: http://dx.doi.org/10.1016/j.compstruct.2005.11.038.

Pilkey, W.D. and Pilkey, D.F. (2008), Peterson’s Stress Concentration Factors. Third Edition. John Wiley & Sons, Inc. Hoboken, New Jersey, Canada.

Lehnickij, S.G. (1977), Teorija uprugosti anizotropnogo tela, [Theory of isotropic elasticity], 2nd ed., Glavnaja redakcija fiz-mat. lit-ry izd-va "Nauka", Moscow, Russia.


GOST Style Citations


1. Карпов Я.С. Соединения деталей и агрегатов из композиционных материалов / Я.С. Карпов. – Харьков: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т", 2006. – 359 с.

 

2. Василевский Е.Т. Система экспериментального обеспечения расчета на прочность механических соединений деталей из композитов / Е.Т. Василевский, А.З. Двейрин, Я.С. Карпов, С.П. Кривенда // Открытые информационные и компьютерные интегрированные технологии. – Х.: НАКУ "ХАИ", 2010. – № 47. – С. 42-52.

 

3. Киркач А.Б. Проблемы прочности болтовых соединений на основе слоистых композиционных пластиков / А.Б. Киркач // Вестник ХПИ. Серия "Динамика и прочность машин". – 2011. – № 63. – С. 45-54.

 

4. ECSS‑E‑HB‑32‑20. Part 1А. Structural materials handbook – Part 1: Overview and material properties and applications. (2011),  available at : http://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part1A.pdf.

 

5. ECSS‑E‑HB‑32‑20, Part 2А. Structural materials handbook – Part 2: Design calculation methods and general design aspects. (2011), available at :  http://www.ecss.nl/wp-content/uploads/handbooks/ecss-e-hb/ECSS-E-HB-32-20_Part2A.pdf .

 

6. Двейрин А.З. Обзор и анализ состояния проблемы расчетно-экспериментального обеспечения проектирования агрегатов самолета из полимерных композитов с механическими соединениями деталей / А.З. Двейрин // Открытые информационные и компьютерные интегрированные технологии. – 2014. – № 66. – С. 5-19.

 

7. Проектирование и конструирование изделий из композиционных материалов. Теория и практика: учебник / П.М. Гагауз, Ф.М. Гагауз, Я.С. Карпов, С.П. Кривенда; под общ. ред. Я.С. Карпова – Х. : Нац. аэрокосм. ун-т им. Н.Е. Жуковского "Харьк. авиац. ин-т", 2015. – 672 с.

 

8. Grover, H.J. (1966), NAVAIR 01-1A-13. Fatigue of Aircraft Structures. NAVAL Air Systems Command Department of the NAVY.

 

9. Решетникова Р.Ю. Влияние осевого натяга на локальное напряженное состояние в односрезных болтовых соединениях / Р.Ю. Решетникова // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. ун-та им. Н.Е. Жуковского «ХАИ». – Вып. 1 (73). – Х., 2013. – С. 87-99.

 

10. Рудаков К.Н. О расчетах болтового соединения на разрывное разрушение ослабленного отверстием сечения композитной пластины / К.Н. Рудаков, Ю.Н. Дифучин // Mechanics and Advanced Technologies. #1(82), 2018. – С. 58-66. DOI: 10.20535/2521-1943.2018.82.121050.

 

11. Савин Г.И. Механика деформируемых тел. Избранные труды. Киев : "Наукова думка", 1979. – 466 с.

 

12. Young, W.C. and Buynas, R.G. (2002), Roark's Formulas for Stress and Strain. Seventh Edition. McGraw-Hill. 852 p.

 

13. Johnson, K.L. (1985), Contact mechanics, Cambridge University Press, Cambridge, Great Britain.

 

14. Ciavarella, M., Baldini, A., Barber, J.R. and Strozzi, A. (2006), Reduced dependence on loading parameters in almost conforming contact. Int. J. Mech. Sci., 48, pp. 917–925

 

15. De Jong, T. (1977), Stresses around pin–loaded holes in elastically orthotropic or isotropic plates. J. Compos. Mater.  vol.11. pp. 313–331.

 

16. Болотин В.В. Механика многослойных конструкций / В.В. Болотин, Ю.Н. Новичков. – М.: Машиностроение, 1980. – 375 с.

 

17. Milton Graeme W. (2004), The Theory of Composites. Cambridge University Press. 719 p.

 

18. Рудаков К.Н. FEMAP 10.2.0. Геометрическое и конечно-элементное моделирование конструк­ций. К., 2011. – 317 с. http://www.cad.dp.ua/stats/FEMAP-102.php

 

19. Дифучин Ю.М. Чисельне моделювання болтових з'єднань з ПКМ. Повідомлення 1. Створення змішаних 3D-моделей / Ю.М. Дифучин, К.М. Рудаков // Вісник НТУУ "КПІ". Сер. машинобудування. №2(77), 2016. – С. 100-107. DOI: 10.20535/2305‐9001.2016.77.76975.

 

20. Рудаков К.Н. К определению модулей упругости пластины с однонаправленным армированием высокомодульным углеродным волокном материала / К.Н. Рудаков, В.Н. Маслей // Mechanics and Advanced Technologies. #3(87), 2019. – С. 7-15. DOI: 10.20535/2521-1943.2019.87.189220.

 

21. Рудаков К.Н. Коэффициент концентрации напряжений у контактирующего с болтом нагруженного отверстия в монослое ортотропного композиционного материала / К.Н. Рудаков, Ю.Н. Дифучин, С.А. Бабиенко // Mechanics and Advanced Technologies #1(85), 2019. – С.41-48. DOI: 10.20535/2521-1943.2019.85.155702.

 

22. Waszczak, J.P. and Cruse, T.A. (1971), Failure mode and strength predictions of anisotropic bolt bearing specimens. J. Compos. Mater. vol. 5. pp. 421–425.

 

23. Zhang, K. and Ueng, C. (1985), Stresses around a pin–loaded hole in orthotropic plates with arbitrary loading direction. Compos. Struct. Vol. 3. pp. 119–143.

 

24. Echavarrı´a, C., Haller, P. and Salenikovich, A. (2007), Analytical study of a pin–loaded hole in elastic orthotropic plates. Composite Structures. vol.79. pp. 107–112. . DOI: http://dx.doi.org/10.1016/j.compstruct.2005.11.038.

 

25. Pilkey, W.D. and Pilkey, D.F. (2008), Peterson’s Stress Concentration Factors. Third Edition. John Wiley & Sons, Inc. Hoboken, New Jersey, Canada.

 

26. Теория упругости анизотропного тела. Изд. 2-е. / С.Г. Лехницкий. – М. : Главная редакция физ-мат. лит-ры изд-ва "Наука", 1977. – 416 с.





Copyright (c) 2020 Mechanics and Advanced Technologies

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

________________

©Mechanics and Advanced Technologies

National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" 

Address: 37, Prospect Peremohy, 03056, Kyiv-56, Ukraine

tel: +380 (44) 204-95-37

http://journal.mmi.kpi.ua/