Investigation of the impedance of liquid-dispersed environment in the conditions of ultrasonic cavitation treatment

Authors

DOI:

https://doi.org/10.20535/2521-1943.2021.5.3.250180

Keywords:

cavitation, wave resistance, modes, model, rheological properties, acoustic parameters, processing efficiency

Abstract

The research of efficiency of use of cavitation energy in technological processes is carried out in the work. It is established that the efficiency is determined by a number of conditions, in particular the maximum use of energy from the source of oscillations and the minimum scattering in the structural elements, the stability of parameters and modes of operation of ultrasonic process equipment. Taking them into account, an algorithm for constructing a mathematical model for the studied environments is proposed. Consistent clarification of the physical nature and mechanism of the process of technological cavitation processing determines the parameters of the model. Taking into account this approach, the peculiarities of the propagation of ultrasonic waves between the emitter and the reflector are investigated. It is established that under the conditions of occurrence of ultrasonic cavitation in the technological environment there are significant changes in its acoustic properties. Taking into account these features is fundamentally important in establishing the modes and parameters of cavitation treatment. The initial value for the calculations of the system "cavitator - environment" is the load resistance of the technological environment.

References

  1. O.F. Luhovskyi, Aparatne zabezpechennia ultrazvukovykh kavitatsiinykh tekhnolohii, 2021, 216 р.
  2. I. Bernyk et al., “Theoretical Investigations of the Interaction of Acoustic Apparatus with Technological Environment Working Process”, Przeglad Elektrotechniczny, 2019, No. 1(4), pp. 32–37.
  3. I. Gryshko, A. Lugovskoy, “Methods of microorganisms inactivation in the technological liquids”, Visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy "Kyivskyi politekhnichnyi instytut". Seriia: Mashynobuduvannia, 2015, No. 3, pp. 165-171.
  4. I. M. Bernyk, “Intensyfikatsiia tekhnolohichnykh protsesiv obrobky kharchovykh seredovyshch”, Vibratsii v tekhnitsi ta tekhnolohiiakh, 2013, No. 3 (71), pp. 109–115.
  5. T.M. Vitenko, Hidrodynamichna kavitatsiia u masoobminnykh, khimichnykh i biolohichnykh protsesakh, Ternopil: Vydavnytstvo TDTU im. I Puliuia, 2009, 224 p.
  6. V.N. Hmelev et al., Primenenie ul'trazvuka vysokoj intensivnosti v promyshlennosti, Bijsk: Izd-vo Alt. gos. tekhn. un-ta, 2010, 203 р.
  7. I. Nazarenko et al., “Determination of stability of modes and parameters of motion of vibrating machines for technological purpose”, Eastern-European Journal of Enterprise Technologies, 2020, No. 6/7 (108), pp. 71–79.
  8. O.F. Luhovskyi and I.M. Bernyk, “Vstanovlennia osnovnykh parametriv vplyvu tekhnolohichnoho seredovyshcha na robochyi protses ultrazvukovoi kavitatsiinoi obrobky”, Vibratsii v tekhnitsi ta tekhnolohiiakh, 2014, No. 3 (75), pp. 121–126.
  9. C.E. Brennen, Cavitation and bubble dynamics, New York: Oxford University Press, 1995, 294 p.
  10. M. Pankaj Ashokkumar et al., “Theoretical and Experimental Sonochemistry Involving Inorganic Systems,” Springer, 2011, 420 p.
  11. Richard James Wood, Judy Lee and Madeleine J. Bussemake, “A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions”, Ultrasonics Sonochemistry, vol. 38, September 2017, pp. 351–370.
  12. Kenneth S. Suslick and J. David, “Flannigan Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation”, Annual Review of Physical Chemistry, vol. 59, pp. 659–683.
  13. Sudib K. Mishra et al., “Modeling the coupling of reaction kinetics and hydrodynamics in a collapsing cavity”, Ultrasonics Sonochemistry, 17, 2010, pp. 258–265.
  14. I.M. Fedotkin, I.S. Gulyj, Kavitaciya, kavitacionnaya tekhnika i tekhnologiya, ih ispol'zovanie v promyshlennosti, Kiev: AO "GLAZ",2000, 684 р.
  15. M.G. Sirotyuk and L.R. Gavrilov, Akusticheskaya kavitaciya, Moskva: Nauka, 2008, 271 p.
  16. I.M. Margulis and M.A. Margulis, “Izmereniya akusticheskoj moshchnosti pri issledovanii kavitacionnyh processov”, Akust. Zhurn., 2005, Т. 1, No. 6. pp. 802–812.
  17. G.N. Kuznecov and I.B. SHCHetkin, “Vliyanie vyazkosti na dinamiku zahlopuvayushchej polosti, dvizhushchejsya postupatel'no”, Akust. Zhurn., Vol. 5, No.19, 1973, pp.727–735.
  18. I. Bernyk et al., “Researcher of the influence of low-frequency and high-frequency actions on processing of technological environments”, EUREKA: Physics and Engineering, No. 1, 2018, рр. 73–86.
  19. I.G. Mihajlov and S.B. Gurevich, “Pogloshchenie ul'trazvukovyh voln v zhidkostyah”, in Uspekhi fizicheskih nauk, XXXV, Vol. 1, Moscow: Fizicheskij institut im. P.N. Lebedeva RAN, 1948.
  20. M.A. Promtov, “Perspektivy primeneniya kavitacionnyh tekhnologij dlya intensifikacii himiko-tekhnologicheskih processov”, Vestnik Tambovskogo gos.tekh. universiteta, No. 4. 2008, pp. 861–869.
  21. B.A. Agranat, Fizicheskie osnovy tekhnologicheskih processov, protekayushchih v zhidkoj faze s vozdejstviem ul'trazvuka, Moscow: Mashinostroenie, 1969.
  22. V.P. Monahov et al., “K voprosu o vtorom poroge ul'trazvukovoj kavitacii v vode”, Akust. zhurn., 21, 3, 1975, рр. 432–435.
  23. S.D. SHestakov, “Mnogopuzyr'kovaya akusticheskaya kavitaciya: matematicheskaya model' i fizicheskoe podobie”, Tekhnicheskaya akustika, No. 14, 2010.
  24. M.G. Syrotyuk, “Kavitacionnaya prochnost' vody”, Trudy akusticheskogo instituta, Vol. 6, 1969, pp. 5–15.
  25. A.A. Dojnikov, S.T. Zavtrak, “Uchet szhimaemosti zhidkosti v zadache o vzaimodejstvii gazovyh puzyr'kov v pole zvukovoj voln”, Akustich. zhurn., Vol. 34, No. 2, 1988, pp. 246–250.
  26. V.A. Akulichev, V.N. Alekseev and K.A. Naugol'nyh, “O dinamike parovyh puzyr'kov v zhidkovodorodnyh ul'trazvukovyh puzyr'kovyh kamerah”, Akust. zhurn., Vol.17, No. 3, 1971, pp. 356–354.

Published

2021-12-27

How to Cite

[1]
I. Bernyk, . I. Nazarenko, and O. Luhovskyi, “Investigation of the impedance of liquid-dispersed environment in the conditions of ultrasonic cavitation treatment”, Mech. Adv. Technol., vol. 5, no. 3, pp. 351–358, Dec. 2021.

Issue

Section

Up-to-date machines and the technologies of mechanical engineering