Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 2. Experimental research




modulus of elasticity, coating, microplasma spraying, bending stiffness, porosity, biomedical materials


As it was mentioned in the first part of this work, to determine the modulus of elasticity of one of the layers of a double-layer beam during bending, it is necessary to know the modulus of elasticity of the other layer and the bending stiffness of the entire section. Therefore, the purpose of the presented part of the work is to experimentally establish the specified characteristics of coated samples of rectangular cross-section and substrate without coating during three-point bending. The results of experimental studies of elastic-geometric characteristics during bending of samples with coatings of VT1-00 and KTC-110 alloys, applied to a substrate of VT6 alloy by microplasma sputtering, with different degrees of porosity, are presented. Analytical calculations of the modulus of elasticity of the specified coatings were carried out, the results of which make it possible to establish the general regularities of its change depending on their degree of porosity.


  1. P.A. Vityaz', V M. Kapcevich, V.K. SHeleg “Poristye poroshkovye materialy i izdeliya iz nih”, Minsk: Vyshejshaya shkola, 1987.
  2. V.S. Loskutov, L.I. Dekhtyar' “Mechanical properties of plasma sprayed coatings of zirconium boride, copper, and composites of them”, Soviet Powder Metallurgy and Metal Ceramics, No. 7 (24), pp. 570–572, 1985.
  3. Y. Torres, J.J. Pavón, I. Nieto, J.A. Rodríguez “Conventional powder metallurgy process and characterization of porous titanium for biomedical applications”, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, No. 4 (42), pp. 891-900, 2011. DOI: 10.1007/s11663-011-9521-6
  4. S.M. Kats “Elastic modulus of materials with a cellular-porous structure”, Strength of Materials, No. 3 (4), pp. 291–296,1972.
  5. F.P. Knudsen “Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size”, Journal of the American Ceramic Society, No. 8 (42), pp. 376–387, 1959.
  6. R.M. Spriggs “Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide”, Journal of the American Ceramic Society, No. 12 (44), pp. 628–629, 1961.
  7. K.K. Phani, S.K. Niyogi “Young's modulus of porous brittle solids”, Journal of Materials Science, No. 1 (22), pp. 257–263, 1987.
  8. W. Pabst, E. Gregorová “New relation for the porosity dependence of the effective tensile modulus of brittle materials”, Journal of Materials Science, No. 10 (39), pp. 3501–3503, 2004.
  9. D.P.H. Hasselman, R.M. Fulrath “Effect of Small Fraction of Spherical Porosity on Elastic Module of Glass”, Journal of the American Ceramic Society, No. 1 (47), pp. 52–53, 1964.
  10. R.W. Rice “Effects of inhomogeneous porosity on elastic properties of ceramics”, Journal of the American Ceramic Society, No. 9-10 (58), pp. 458–459, 1975.
  11. DOI: 10.1111/j.1151-2916.1975.tb19026.x
  12. L.A. Lopata “Zavisimost' modulya uprugosti poroshkovyh pokrytij ot ih poristosti pri elektrokontaktnom pripekanii”, Tekhnіka v sіl's'kogospodars'komu virobnictvі, galuzeve mashinobuduvannya, avtomatizacіya, No. 24 (ІІ), pp. 91-96, 2011.
  13. Yu.S. Borisov, A.N. Kyslytsia, S.G. Voinarovych “Peculiarities of the process of microplasma wire spraying”, The Paton Welding Journal, No.4, pp. 21–25, 2006.
  14. S. Voinarovych, O. Kyslytsia, Ie. Kuzmych-Ianchuk et al. “Innovative coatings for implants and parts for osteosynthesis”, Series on Biomechanics, No. 4 (31), pp. 27–33, 2017. DOI: 10.15593/RJBiomech/2022.1.04
  15. J. Quinn, R. McFadden, C.-W. Chan, L. Carson “Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation”, iScience, No. 11 (23), Article number 101745, 2020.
  16. I. Matuła, G. Dercz, J. Barczyk “Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications”, Materials Science and Technology, No. 9 (36), pp. 972–977, 2020.
  17. L.I. Tushinskij, A.V. Plohov, V.I. Sindeev, A.A. Stolbov “Konstruktivnaya prochnost' kompozicii osnovnoj metall-pokrytie”, Novosibirsk: Nauka, Sibirskaya izdatel'skaya firma RAN, 1996.
  18. I.A. Birger, R.R. Mavlyutov “Soprotivlenie materialov”, Moskva: Nauka, uchebnoe posobie, 1986
  19. G.S. Pisarenko, O.L. Kvіtka, E S. Umans'kij “Opіr materіalіv”, Kiїv: Vishcha shkola, za red. G. S. Pisarenka, pіdruchnik, 2004.
  20. I.-H. Oh, N. Nomura, N. Masahashi, S. Hanada “Mechanical properties of porous titanium compacts prepared by powder sintering”, Scripta Materialia, No. 12 (49), pp. 1197–1202, 2003.



How to Cite

M. Dyman, A. . Moltasov, and S. Kaliuzhnyi, “Calculation and experimental procedure for determining the modulus of elasticity of porous coatings on a substrate during bending. Part 2. Experimental research”, Mech. Adv. Technol., vol. 6, no. 3, pp. 262–268, Dec. 2022.