Criterion of the limit state of composites materials

Authors

DOI:

https://doi.org/10.20535/2521-1943.2022.6.3.264783

Keywords:

damage, destruction, limit state criterion, continuum mechanics of damage, anisotropy, type of stress state

Abstract

The problem of calculating the limit state of composite materials (CM) at the level of macrocrack initiation is considered. It is shown that today there is no method for predicting the stage of their scattered destruction, taking into account the anisotropy of mechanical properties, and the choice of the damage parameter is not justified. This parameter makes it possible to integrally evaluate the degradation of CM due to the action of thermodynamic operational load.

The purpose of the research is the selection and justification of the CM destruction criterion, taking into account the parameters of damage and anisotropy.

The phenomenological approach and the basic principles of thermodynamics of irreversible processes and the Kachanov-Rabotnov damage parameter were used. A comparison of two energy approaches based on the hypothesis of additional stresses and the thermodynamics of irreversible processes is carried out. On the basis of the complex of experimental studies for proportional and non-proportional trajectories of cyclic load under the conditions of a plane stress state, their equivalence in use has been established.

It is shown that in order to calculate the durability of structural elements, it is necessary to take into account the threshold value of the damage parameter at the level of the endurance limit of the CM. The regularities of damage accumulation kinetics depending on the type of stress state and ultimate plasticity of the material are established. For metallic materials, the main directions of accumulation of scattered fractures are the directions of action of the maximum normal stresses. For CM, it is necessary to take into account the effect of the tangential components of the stress tensor. The modified Mises criterion for the failure stage in effective stresses is described.

The method of obtaining the parameters of the proposed criterion is shown. It was established that the value of the damage parameter practically does not depend on the level of elastic-plastic deformation. This makes it possible to reduce the number of basic experiments for using the failure criterion at the macrocrack initiation stage.

It is shown that the use of the concept of damage makes it possible to significantly refine the criterion for an anisotropic material.

References

  1. N. K. Kucher and M. N. Zarazovskiy, “Opredeleniye nesushchey sposobnosti sloyev armirovannykh plastikov s uchetom degradatsii mekhanicheskikh parametrov otdel'nykh sloyev”, Problemy prochnosti, no. 2, pp. 111–124, 2010. Available: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/111835/10-Kucher.pdf?sequence=1.
  2. V. V. Panasyuk, “Mekhanika ruynuvannya ta mitsnistʹ materialiv: dosyahnennya ta perspektyvy”, Fizyko-khimichna mekhanika materialiv, vol. 40, no. 3, pp. 5–18, 2004.
  3. A. K. Malmeyster, V. P. Tamuzh and G. A. Teters, Soprotivleniye polimernykh i kompozitnykh materialov. Riga: Zinatne, 1980.
  4. V. A. Romashchenko, “Otsenka prochnosti kompozitnykh i metallokompozitnykh tsilindrov pri impul'snom nagruzhenii. Soobshcheniye 1. Pravila vybora i sravnitel'nyy analiz razlichnykh kriteriyev prochnosti anizotropnogo materiala”, Problemy prochnosti, no. 4, pp. 42–57, 2012.
  5. P. P. Lepikhin and V. A. Romashchenko, “Metody i rezul'taty analiza napryazhenno-deformirovannogo sostoyaniya i prochnosti mnogosloynykh tolstostennykh anizotropnykh tsilindrov pri dinamicheskom nagruzhenii (obzor). Soobshcheniye 3. Fenomenologicheskiye kriterii prochnosti”, Problemy prochnosti, no. 3, pp. 24–41, 2013.
  6. P. P. Lepikhin, V. A. Romashchenko and E. V. Bakhtina, “Metody i rezul'taty analiza napryazhenno-deformirovannogo sostoyaniya i prochnosti mnogosloynykh tolstostennykh anizotropnykh tsilindrov pri dinamicheskom nagruzhenii (obzor). Soobshcheniye 1. Eksperimental'nyye issledovaniya”, Problemy prochnosti, no. 1, pp. 17–32, 2013.
  7. P. P. Lepikhin and V. A. Romashchenko, “Metody i rezul'taty analiza napryazhenno-deformirovannogo sostoyaniya i prochnostti mnogosloynykh tolstostennykh anizotropnykh tsilindrov pri dinamicheskom nagruzhenii (obzor). Soobshcheniye 2. Teoreticheskiye metody”, Problemy prochnosti, no. 2, pp. 31–45, 2013.
  8. Teoreticheskie metody”, Probl. prochnosti, No. 2, pp. 31–45, 2013.
  9. T. A. Bogetti, C. P. R. Hoppel, V. M. Harik, J. F. Newill and B. P. Burns, “Predicting the nonlinear response and progressive failure of composite laminates”, Composites Science and Technology, vol. 64, no. 3-4, pp. 329-342, 2004. DOI: https://doi.org/10.1016/S0266-3538(03)00217-3
  10. pp. 329–342, 2004. DOI: doi.org/10.1016/S0266-3538(03)00217-3
  11. N. A. Alfutov, P. A. Zinov'yev and B. G. Popov, Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov. Moskva: Mashinostroyeniye, 1984, 264 p.
  12. Kompozitsionnyye materialy: Spravochnik, V. V. Vasil'yev, Yu. M. Tarnopol'skiy, ed. Moskva: Mashinostroyeniye, 1990, 510 p.
  13. Mekhanika kompozitov, vol. 3. Statisticheskaya mekhanika i effektivnyye svoystva materialov, L. P. Khoroshun, ed. Kyiv: Naukova dumka, 1993, 390 p.
  14. A.N. Guzya Ed.,Vol. 3, Kiev: Nauk. dumka, 1993.
  15. A. A. Il'yushin, “O svyazi mezhdu napryazheniyami i malymi deformatsiyami v mekhanike sploshnykh sred”, Prikladnaya matematika i mekhanika, vol. 18, no. 6, pp. 641–666, 1954.
  16. Yu. N. Shevchenko and R. G. Terekhov, Fizicheskiye uravneniya termovyazkoplastichnosti. Kyiv: Naukova dumka, 1982, 240 p.
  17. V. V. Novozhilov and Yu. I. Kadashevich, Mikronapryazheniya v stroitel'nykh materialakh. Leningrad: Mashinostroyeniye, 1990, 223 p.
  18. L. M. Kachanov, “O vremeni razrusheniya v usloviyakh polzuchesti”, Izvestiya AN SSSR, no. 8, pp. 26–32, 1958.
  19. Yu. N. Rabotnov, “O mekhanizme dlitel'nogo razrusheniya”, Voprosy prochnosti materialov i konstruktsiy, vol. 1, pp. 5–8, 1959.
  20. J. Lemaitre and R. Desmorat, Engineering Damage Mechanics. Berlin, Heidelberg: Springer-Verlag, 2005, 380 p. DOI: https://doi.org/10.1007/b138882.
  21. Q. M. Li, “Strain energy density failure criterion”, Intern. Journ. of Solids and Structures, vol. 38, no. 38-39, pp. 6997–7013, 2001. DOI: https://doi.org/10.1016/S0020-7683(01)00005-1.
  22. DOI: doi.org/10.1016/S0020-7683(01)00005-1
  23. N. I. Bobyr', B. O. Yakhno and A. P. Grabovskiy, “Povrezhdennost' stroitel'nykh materialov pri slozhnom malotsiklovom nagruzhenii”, Problemy prochnosti, no. 6, pp. 25–34, 2007. Available: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/48156/03-Bobyr.pdf?sequence=1.
  24. B. O. Yakhno and M. I. Bobyr, “Rozrakhunok dovhovichnosti materialiv dlya umov skladnoho malotsyklovoho navantazhennya”, Visnyk Sumsʹkoho derzhavnoho universytetu, no. 12(58), pp. 184–189, 2003.
  25. N. I. Bobyr’ and V. V. Koval’, “Damage contribution to the assessment of the stress-strain state of structure elements”, Strength of materials, vol. 49, no. 3, pp. 361-368, 2017. DOI: https://doi.org/10.1007/s11223-017-9876-2.
  26. N. I. Bobyr’, A. P. Grabovskii, A. P. Khalimon, A. V. Timoshenko and A. N. Maslo, “Kinetics of scattered fracture in structural metals under elastoplastic deformation”, Strength of materials, vol. 39, no. 3, pp. 237–245, 2007. DOI: https://doi.org/10.1007/s11223-007-0030-4.
  27. M. Bobyr, O. Bondarets and O. Khalimon, Modeling of scattered damage accumulation kinetics under combined stress Journ. Strength of materials, No. 44, pp. 20–26,2012. DOI: doi.org/10.1007/s11223-012-9344-y

Published

2022-12-14

How to Cite

[1]
M. Bobyr, “Criterion of the limit state of composites materials”, Mech. Adv. Technol., vol. 6, no. 3, pp. 229–236, Dec. 2022.

Issue

Section

Mechanics