Research and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models

Authors

DOI:

https://doi.org/10.20535/2521-1943.2022.6.2.269921

Keywords:

cavitation bubble, liquid medium, discrete and continuous model, bubble radius, acoustic parameters, amplitude and frequency of oscillations, intensity, natural frequency of oscillations

Abstract

In the work, the study and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models was carried out. The research is based on the hypothesis that the determination of the effective parameters of the work process of acoustic processing is implemented by applying a transitional physical model from a discrete to a continuous type of processing of the technological environment. The obtained analytical dependences allow to calculate the amplitude of oscillations and the frequency of natural oscillations. With the help of the specified formulas, it is possible to determine the zones of amplification or attenuation of the amplitude of oscillations for different frequencies of oscillations. The proposed formula for determining the frequency of natural oscillations, which takes into account changes in the properties of the medium from homogeneous at the initial stage to the appearance of cavitation bubbles at the specified frequency of natural oscillations. Numerical values of intensity, pressure, amplitude of oscillations, velocity, acceleration, viscosity and maximum bubble radius are given. The obtained numerical values can be used in practical calculations of acoustic processing parameters of different nature and properties of technological environments.

References

  1. A. F. Lugovskoy and N. V. Chukhrayev, Ul'trazvukovaya kavitatsiya v sovremennykh tekhnologiyakh. Kyiv: VPTS "Kyyivsʹkyy universytet", 2007, 244 р.
  2. A. A. Dolinskiy and G. K. Ivanitskiy, Teplomassoobmen i gidrodinamika v parozhidkostnykh dispersnykh sredakh. Teplofizicheskiye osnovy diskretno-impul'snogo vvoda energii. Kyiv: Naukova dumka, 2008, 382 р.
  3. N. Bretz, J. Strobel, M. Kaltenbacher and R. Lerch, "Numerical simulation of ultrasonic waves in cavitating fluids with special consideration of ultrasonic cleaning", in IEEE Ultrasonics Symposium, 2005, vol. 1, Rotterdam, Netherlands, 2005, pp. 703-706. DOI: https://doi.org/10.1109/ULTSYM.2005.1602948.
    |
  4. E. A. Brujan and P. R. Williams, Bubble dynamics and cavitation in non-newtonian liquids. The British Society of Rheology. Category: Rheology Reviews, 2005.
  5. Juan A. Gallego-Juarez, “High-power ultrasonic processing: recent developments and prospective advances”, Physics Procedia, vol. 3, no. 1, рр. 35–47, 2010. DOI: https://doi.org/10.1016/j.phpro.2010.01.006.
  6. T. Du, C. Huang and Y. Wang, "A Numerical Model for Evolution of Internal Structure of Cloud Cavitation", in 16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Hawaii, Honolulu, 2016.
  7. R. Toegel, S. Luther and D. Lohse, “Viscosity Destabilizes Sonoluminescing Bubbles”, Physical Review Letters, vol. 96, no. 11, р. 114301, 2006. DOI: https://doi.org/10.1103/PhysRevLett.96.114301.
    |
  8. A. Moshaii and R. Sadighi-Bonabi, “Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble”, Physical Review E, vol. 70, no. 1, р. 016304, 2004. DOI: https://doi.org/10.1103/PhysRevE.70.016304.
    | |
  9. D. J. Flannigan and K. S. Suslick, “Molecular and atomic emission during single-bubble cavitation in concentrated sulfuric acid”, Acoustics Research Letters Online, vol. 6, no. 3, рр. 157–161, 2005. DOI: https://doi.org/10.1121/1.1897810.
  10. I. M. Fedotkin and I. S. Gulyy, Kavitatsiya, kavitatsionnaya tekhnika i tekhnologiya, ikh ispol'zovaniye v promyshlennosti. Ch. II. Kyiv: AO "OKO", 2000, 898 p.
  11. R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau, H. J. Gibeling et al., “A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction”, Computers & Fluids, vol. 29, no. 8, рр. 849–875, 2000. DOI: https://doi.org/10.1016/S0045-7930(99)00039-0.
  12. A. K. Singhal, M. M. Athavale, H. Li and Y. Jiang, “Mathematical Basis and Validation of the Full Cavitation Model”, Journal of Fluids Engineering, vol. 124, no. 3, рр. 617–624, 2002. DOI: https://doi.org/10.1115/1.1486223.
  13. V. H. Arakeri, “Sonoluminescence and bubble fusion”, Current Science, vol. 85, no. 7, рр. 911–916, 2003.
  14. C. E. Brennen, Cavitation and bubble dynamics. New York, NY: Oxford University Press, 1995, 294 p. DOI: https://doi.org/10.1093/oso/9780195094091.001.0001.
  15. I. Bernyk, O. Luhovskyi and I. Nazarenko, “Effect of rheological properties of materials on their treatment with ultrasonic cavitation”, Materials and technology, vol. 52, no. 4, рр. 465–468, 2018. DOI: https://doi.org/10.17222/mit.2017.021.
  16. I. M. Bernyk and O. F. Luhovskyi, "Enerhetyka kavitatsiynoyi oblasti", in Materialy XX Mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi "Hidroaeromekhanika v inzhenerniy praktytsi", Kyiv, Ukraine, 2015, p. 50.
  17. I. M. Bernyk, “Vstanovlennya ratsionalʹnoho rivnya enerhiyi ta optymalʹnykh parametriv ulʹtrazvukovoyi kavitatsiynoyi obrobky tekhnolohichnykh seredovyshch", in Tezy dopovidey XVII Mizhnarodnoyi naukovo-tekhnichnoyi konferentsiyi “Vibratsiyi v tekhnitsi ta tekhnolohiyakh”, Lviv, Ukraine, 2018, pp. 95–96.
  18. I. I. Nazarenko, Prykladni zadachi teoriyi vibratsiynykh system. Kyiv: Vydavnychyy Dim “Slovo”, 2010, 440 p.
  19. R. W. Time and A. Н. Rabenjafimanantsoa, “Cavitation Bubble Regimes in Polymers and Viscous Fluids”, Annual transactions of the Nordic rheology society, vol. 19, pp. 1–12, 2011. Available: https://nordicrheologysociety.org/Content/Transactions/2011/34.Time2011.pdf.

Published

2022-10-01

How to Cite

[1]
I. Bernyk, I. Nazarenko, and O. Luhovskyi, “Research and determination of the acoustic parameters of the movement of a cavitation bubble in a liquid medium according to discrete and continuous models”, Mech. Adv. Technol., vol. 6, no. 2, pp. 195–202, Oct. 2022.

Issue

Section

Up-to-date machines and the technologies of mechanical engineering