Dynamic control of vibrations during turning

Authors

  • V. Zaloha Сумський державний університет, м. Суми, Ukraine
  • Ju. Shapoval Сумський державний університет, м. Суми, Ukraine
  • К. Drofa Сумський державний університет, м. Суми, Ukraine
  • D. Krivoruchko Сумський державний університет, м. Суми, Ukraine

DOI:

https://doi.org/10.20535/2521-1943.2017.79.58793

Keywords:

finite element method, modal analysis, turning, weight, roughness, forced vibrations

Abstract

Abstract. Purpose. Identification the effects that lead to a decrease in the vibration amplitude during the dynamic control of the machine tool additional mass location and determination the limits of this method application.
Design/methodology/approach. Study uses high spindle speed machine tool of special design. The experimental measurements of tool, carriage, spindle and base accelerations and displacements were carried out and compared to the results of finite element
modal analysis. Tests concentrated on two structural variants of machine tool that differ with additional mass amount.
Findings. The experimental results confirmed the possibility of decreasing of the relative tool edge vibration amplitude and roughness of the machined surface when changing the additional mass location in the machine tool system. Modal analysis showed that this effect results from the change in structure eigenform. Thus, the decrease in the amplitude of the relative tool edge
displacement is possible by dynamic control of additional mass location with the aim of guaranty the tool edge location in the vibration node. This effect is easier to implement, the greater the spindle speed is used.

References

  1. Mazur, M.P., Vnukov, Yu.M., Dobroskok, V.L., Zaloha, V.O., Novoselov, Yu.K. and Yakubov, F.Ya. (2011), Basic theory of cutting materials: textbook for higher education, [Osnovy teoriyi rizannya materialiv: pidruchnyk dlya vyshchykh navchal'nykh zakladiv], in Mazur, M.P., 2nd (ed.), Novyy Svit, L'viv, Ukraine.
  2. Kudinov, V.A. (1967), Dinamika stankov [Machine dynamics], Mashinostroenie, Moscow, Russia.
  3. Zharkov, I. G. (1986), Vibracii pri obrabotke lezvijnym instrumentom [Vibrations during processing blade tool], Mashinostroenie, St.Peterburg, Russia.
  4. Zaloha, V.A. and Shapoval, Yu.V. (2015), “Effect of spindle speed on the quality of surface finish when turning”, «Mashinobuduvannja Ukraїni ochima molodih: progresivnі іdeї - nauka - virobnictvo» Tezi dopovіdej ХV vseukraїns'koї molodіzhnoї naukovo-tehnіchnoї konferencії, 04-07 listopada 2015, ZhDTU, Zhitomir, PP. 30 – 31.
  5. Kikonin, I.K. (ed.) (1976), Tables of physical quantities. Directory [Tablicy fizicheskih velichin. Spravochnik], Atomyzdat, Moscow, Russia.
  6. Naryshkin, V.N. and Korostashevsksy, R.V. (1984), Rolling bearings: Directory catalog [Podshipniki kachenija: Spravochnik-katalog], Mashinostroenie, Moscow, Russia.
  7. Agilent Tehnologies. “The Fundamentals of Modal Testing”, available at: URL: http://www.modalshop.com/techlibrary/Fundamentals%20of%20Modal%20Testing.pdf
  8. Zaloga, V.O. and Nagornij, V.V. (2014), “Diagnosis of technical condition of machine tools”, Harkіv, NTU “HPІ”, no. 1 (24), PP. 71 – 79.
  9. Nagornij, V.V. (2015), “Controlling the dynamic behavior of metal-processing systems and method for the determination of the resource”, dis. kand. tehn. nauk, Sumi, Ukraine.

Published

2017-06-22

How to Cite

[1]
V. Zaloha, J. Shapoval, Drofa К., and D. Krivoruchko, “Dynamic control of vibrations during turning”, Mech. Adv. Technol., no. 1(79), pp. 100–107, Jun. 2017.

Issue

Section

Original study